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Oscillation for second order nonlinear delay differential
equations with impulses
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Abstract: In this paper , we investigate the oscillation of second order nonlinear delay differential
equations with impulses of the form

[r(t)x'(t)] +p(t)x'(t)+Q(t,x(t=5)) =0t 2ty t #t, k =1,2,..n

()= 0 (x(t)). ¥ (67)=h (x (1))
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I.  Introduction
The theory of impulsive differential equations is now being recognized to be not only richer than
the corresponding theory of differential equations without impulses, but also represents a more natural frame
work for the mathematical modeling of many real work phenomena[1].There are many papers devoted for
the oscillation criteria of second-order differential equations without impulses[2-3],with impulse[4-7]
.In[8],the authors obtained the asymptotic behavior for the equations

[r(t)x'()] +p(t)x'()+Q(t,x(t-5)) =0t 2t t £t k =1,2,..n

x(tk*) =0, (x(tk)), x'(tk*) =h, (x'(tk*))

In this paper we obtain the oscillation of second order nonlinear delay differential equations with
impulses of the form

[r(t)x'(t)] +p(t)x'(t)+Q(t.x(t-5)) =0t 2t t #t, k=12,.n (D)
x(, ) (x(8)) x (67) = (x (1)) (2)
X(1)=g(t).x(t; ) =%, X(t)=%"te[t,—d.t] €)

where for every t, >0,¢ € PC, = {¢:[t, —5,t,] > +o/ ¢}
A function X(t) is said to be a solution of (1) and (2) satifying the initial value condition (3) if
(i) X:[t, —&,00] -1 satisfies(1.3) fort, 5 <t <t:t >, x(t; ), X (7 ), x(t, ) andx (t, )
(i) X(t) and X (t) are continuously differentiable for t > t, , t #t, t #1t, + 6 and satisfies
();
Gii) for >, X(t; ), X (t; ), x(t, ) andx (t, ) exist with x(t; ) =x(t,), X (t; ) =X (t, ) and satisfy
()

As is customary, a solution of (1) and (2) is said to be non oscillatory, if it is eventually positive or eventually
negative. Otherwise it will be called oscillatory.
Here, we always assume

(H1) Q(t,X) is continuous
in[t,, ) , XQ(t,x)>0(x=0) and Q(t,x)/ f (x

Zq(t) (X;tO)where q(t) is continuous
in[ty,) and q( )20, Xf( ).0, f ( )2k>0 ( )>O
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(H2) p(t), gy (x),h (x) are continuous in R and there exist positive numbers a,,a,,b,,by such that

« X . h(x
a SgLLlﬁanfék()Sbw
X X
Lemma 1 Let x(t) be a solution of (1) and (2).Suppose that there exists some

T >t, suchthat x(t) > 0,t > T.If (H1) and (H2) are satisfied and

§ Hifa | exp{ froz p(s)ds}du

m=1 k=m 1=0 toa

r(s)
holds, then x (t;) >0and x (t) >0 forte(t,,t,,,],wheret, >T k=12,..n.

+Hb1 tj { [ Mds}du — 40 4)

n1

Proof. At first,we prove that X (tk ) > Ofor any t, >T. If it is not true ,then there exist some j such that
t;>T,X(t]) <0.Then X (t7) =h;, (X (t;)) <b;X (t;) .By (1),we have

. r(t)+p() . Q(t,x)
X (t)+TX(t)+W_O1

i.e.,

K (t)exp| [FEEPO)yg || - Q0 o [FrS) POy |
r(s) r(t) r(s) -

] ]

te(t).t;, |

®)

g )

]

Hence X (t)exp[jMds]

is decreasing in (tJ tﬁl]

X (t J+l)exp{ flMdsJ <x'(t7) <bx'(t,),
po T(s)

J+1

X (t.) <bix )exp[ I% J

Forte (t ] we have

j+1? J+2

X( J+2) bj+1b X (t )exp[ T% J

It is easy to show that for any natural number n > 2

J+1

H (8)+P(S)ye
j+n) b]+kx (t )exp[ I‘; r(S) J (6)
Since
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t)exp r'(s)+ p(S)
G

is decreasing in ( Hl] hence,

X'(t) < x'(t})exp[—jwds}t et ’tm]-
ior(s)

Integrating the above inequality from s to t , we have

x(t)£x(5)+x'(tj+)jexp[ j%sjdu t,<s<t<t,,.

Lett—>t,,,s —)t.+, we get

j+

X(ty.,) < X(t7 )+ x'(t] )Iexp( JMdstu

]+l

a;x(t;)+byx'(t, )j exp{ jMdstu

X(t;..) <@ .ax(t,)+ Hlbx(t)Jexp[ J‘%s]dwrbwbx(t)jfexp[ IMdstu

By induction for any natural number n , we have

0t 04 0t m tha r'(s)+p(s) ot (r's)+p(s),
X(tm)ﬁg a.X(t )+ X );qu[aﬁkbl” J EXp[ r(s) S]dwg b”ktj EXF{_J r(s) SJdu

Limt j+n-1

since ()>OX( ) 0( T) , the above inequality is contrary to condition
(4).Therefore X ( k) ( ) .Because

j r(s)+p(s) 4
r(s)

is decreasing in (t;,t;,,],

X (t)exp

4

. £r'(s)+ p(s) , 1 (s)+p(s)
X (t)exp ITdS > X (t J+1)exp[ tJJ‘ Tds] >0

Hence X (t) >0, t e (t,.t,..].
The proof of Lemma 1 is complete.

4
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Theorem 1:
If conditions (1) — (3) hold, thena, <1land thereexist G(t) > O(s 0), F(t) > O suchthat the following equa

ZHb[ JFZ(t)jepr:%mF(s)ds}dt:+oo,

m=1 j=m

where

v (0 -k a0 ki) - PG ~[rOGO] +rE° W) ],
a(t) = exp[—Z j;c;(u)du] |

Proof.Let x(t) be a nonoscillatory solution of the differential equation (1) and let T, >t, be such that
x(t) = 0 forallt > t, Without lossof generality, weassumethat x(t) >0 for allt > T,.Inthe following , we
x'(t) G(t)

+ :
f (x(t —5)) k
Differentiating the equality and making use of (1) and (H1) we get

t)v(t kv (t katrt ka(t)r(t
- 2OV _ KO KO oy KOO popy
r(t) a(t)r(t) 4 4

( (t)—ker® ¢ (t)}— kE )+ v, )

4 r(t)
Forallt>T,,t=t,, withy(t)defined as above, by (4)

v(t) = a(t)r(t){

vi(t) <-

v(t) exp D LIO) +kF (s)ds}

( () - ka(t)r(t) F (t)j expDé%Jr kF(S)dS}.

Integrating fromstos,

v(sl)sv(s)exp“i%jth(s)ds} J. { (t)- ka(t)r(t)F (t)}
xexp{L:%+kF(s)ds]
X'(t) Gt
v(t;)a(tor(tk){fka)ﬁ w. ®

In(8) let s, =t,,S, =t, . Then
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V(E) <b, <bv(t)exp { f % +kF (s)ds}

ka(t)r(t) 2 t P(S)
I { (t) - F (t)}exp“tlﬁ+kF(s)ds}

By induction, for any natural number n, we have
: b p(s)

v(t:) <[ | bv(t;)ex +KkF(s)ds

)< [bvtts) P{L o O }

xznb{ () - w(t)}e pD p(5)+kF(s)ds}

m=1 j=m
By the condition of theorem 1 and V(tg) >0 , the above inequality is impossible. The proof of theorem is

completed.

Theorem 2.
Assume that the condition of lemma 1 hold and

f(ab)> f(a)f(b)foranyab>0, f (a% <1fork >1.If thereexist F (t),G(t) > Osuchthat

n n

ka(®)r(t) . p(s)
I(t)— " VR (e p{j )+kF(s)ds}dt_+oo

b,
m=1 j=m f(al )m

then every solution of lisoscillatory
Proof. With loss of generality ,we assume that x(t)>0.By Lemma (1) , X '(t) > 0.

Let

v(t):a(t)r(t){%“)) ?}

Then v(t) >0, V( )> 0. Relation (1) yields

+ bk
v(tk)sTa;)v(tk).

Following the similar way to the proof of theorem 1, the proof is omitted .
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Theorem 3.
Supposethe conditions of Lemmalhold and thereexists a positive integer

k, suchthata, * >1 fork > k,.If

J.md—u<+oo —ed_u>_oo
- T TN

j i Q(S) t r'u)+p(u)
zbk - J'tm_ @eprMTdu}ds

xexp _It Mdu +exp _J‘ r'(u)+ p(U)d
And b r(u) o r(u)

xexp r Mdu ds =+
te r(u)
hold ,thenevery solution of (1)is oscillatory

Proof .Without loss of generality ,we assume that x(t) > 0 for all t > T, k0 =1.
By (2) we know

X(t)>x(t)epr r(s)“’(s) ] er(zt)X)

x exp( IIMdsj dt,

r(s)
iy s X () re)+pB)y |, [z QLX)
X(tl)ZFeXpUn ) J |~
xexp[ (S)+p(s):'J
k! r(s)
By induction for any natural number k , we have
i)z X ) (m) o [ wa F(S) + P(S) 4 j [0
By k r(s) woor(t)

xexp Mds dt
Wr(s) |
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From

the above and (2 , noting

X'(t;) > 0,weget, fort e (t,.t,,],

L1 s q(s) € ri(u)+pu)
Zb—jtkﬂ_ @exp LM o du |ds

coxp _;;j—”“ggj;(%u
N RLOMM R JOLL I
) e r()

This contradicts the hypothesis.

Remark

When r(t)=1,p(t)=0, o =0,if we take F(t)=G(t)=0,the results of this paper become the ones of those given in

[4.5]
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