The Value Distribution of Some Differential Polynomials

¹Subhas S. Bhoosnurmath, ²K.S.L.N.Prasad

¹Department of Mathematics, Karnatak University, Dharwad-580003-INDIA ²Associate Professor, Department of Mathematics, Karnatak Arts College, Dharwad-580001, INDIA

Abstract: We prove a value distribution theorem for meromorphic functions having few poles from which we obtain several interesting results which improve some results of W. Doeringer, C.C.Yang, A.P.Singh, G.P.Barker and others.

I. Introduction And Main Results

Let f be a transcendental meromorphic function in the plane.

A monomial in f, is an expression of the form $\mathbf{M}[\mathbf{f}] = \mathbf{f}^{n_o} (\mathbf{f}^{(1)})^{n_1} \dots (\mathbf{f}^{(k)})^{n_k}$ where $n_0, n_1, n_2, \dots, n_k$ are non negative integers.

 $\gamma_{\rm M} = \mathbf{n}_0 + \mathbf{n}_1 + \mathbf{n}_2 + \dots + \mathbf{n}_k$ is called the degree of the monomial and $\Gamma_{\rm M} = \mathbf{n}_0 + 2\mathbf{n}_1 + \dots + (\mathbf{k} + 1)\mathbf{n}_k$, the weight.

If $M_1[f], M_2[f], ..., M_n[f]$ denote monomials in f, then,

 $Q[f] = a_1 M_1[f] + a_2 M_2[f] + ... + a_n M_n[f], \text{ where } a_i \neq 0 \text{ (i = 1, 2, ..., n), is called a differential } (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called a differential (i = 1, 2, ..., n), is called (i =$

polynomial in f of degree $\gamma_Q = \operatorname{Max}\{\gamma_{M_j} : 1 \le j \le n\}$ and weight $\Gamma_Q = \operatorname{Max}\{\Gamma_{M_j} : 1 \le j \le n\}$

Also, we call the numbers $\underline{\gamma}_{\underline{Q}} = \min_{1 \le j \le n} \gamma_{M_j}$ and k (the order of the highest derivative of f) the **lower**

degree and the order of Q[f] respectively. If $\gamma_Q = \gamma_Q$, Q[f] is called a homogeneous differential

II. polynomial.

W.K.Hayman in his well known problem book 'Problems in Function Theory' has raised some interesting open problems related to the value distribution of differential polynomials.

In 1988, Hong-XunYi[6] proved the following result:

Theorem A: Let f be transcendental meromorphic function in the plane and $Q_1[f] \neq 0$, $Q_2[f] \neq 0$ be differential polynomials in f.

Let
$$P_1[f] = a_n f^n + a_{n-1} f^{n-1} + \dots + a_0 \quad (a_n(z) \neq 0)$$

If $F = P_1[f] Q_1[f] + Q_2[f]$, then
 $(n - \gamma_{Q_2})T(r, f) \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{P_1[f]}\right) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)\overline{N}(r, f) + S(r, f).$

Thinking on the same lines, we considered a different combination of differential polynomials and obtained an interesting result which generalizes the result of Hong-Xun Yi. The following theorem is our main result.

Theorem 1: Let f be transcendental meromorphic function in the plane and

 $Q_1[f] \neq 0, Q_2[f] \neq 0$ be differential polynomials in f.

Let
$$P_1[f] = a_n f^n + a_{n-1} f^{n-1} + \dots + a_0 (a_n(z) \neq 0)$$
 (1)
and $P_2[f] = b_m f^m + b_{m-1} f^{m-1} + \dots + b_0 (b_m(z) \neq 0)$ (2)
where $n > m$.

If
$$F = P_1[f]Q_1[f] + P_2[f]Q_2[f]$$
 (3)

$$\text{Then, } \left(n - \gamma_{Q_2}\right) T\left(r, f\right) \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{P_1[f]}\right) + 3\overline{N}\left(r, \frac{1}{P_2[f]}\right) + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right)\overline{N}\left(r, f\right) + S\left(r, f\right)$$

To prove the above Theorem, we require the following Lemmas.

Lemma 1[2]: Suppose $P_1[f]$ is as in (1).

Then, $m(r, P_1[f]) = n m(r, f) + S(r, f)$

Lemma 2 [4]: Let f(z) be a transcendental meromorphic function, P[f] and Q[f] be differential polynomials in f. If degree of Q[f] is at most n and $f^n P[f] = Q[f]$, then, m(r, P[f]) = S(r, f).

Lemma 3 [3]: If P[f] is a homogeneous differential polynomial of degree n, then,

$$m\left(r,\frac{P[f]}{f^n}\right) = S(r,f).$$

Lemma 4 [6]: Suppose that Q[f] is a differential polynomial in f. Let z_0 be a pole of f of order m and not a zero or a pole of the co-efficients of Q[f]. Then z_0 is a pole of Q[f] of order atmost m $\gamma_Q + (\Gamma_Q - \gamma_Q)$.

Lemma 5 [11]: If Q[f] is a differential polynomial in f with arbitrary meromorphic co-efficients q_i , then

$$m(r, Q[f]) \le \gamma_Q m(r, f) + \sum_{j=1}^n m(r, q_j) + S(r, f).$$

Proof of Theorem 1:

We have $F = P_1[f] Q_1[f] + P_2[f] Q_2[f]$ Therefore, $\mathbf{F}' = \frac{\mathbf{F}'}{\mathbf{F}} \mathbf{P}_1[\mathbf{f}] \mathbf{Q}_1[\mathbf{f}] + \frac{\mathbf{F}'}{\mathbf{F}} \mathbf{P}_2[\mathbf{f}] \mathbf{Q}_2[\mathbf{f}]$

Also,
$$\mathbf{F}' = \mathbf{P}_1[\mathbf{f}] (\mathbf{Q}_1[\mathbf{f}])' + \mathbf{Q}_1[\mathbf{f}] (\mathbf{P}_1[\mathbf{f}])' + \mathbf{P}_2[\mathbf{f}] (\mathbf{Q}_2[\mathbf{f}])' + \mathbf{Q}_2[\mathbf{f}] (\mathbf{P}_2[\mathbf{f}])'$$

Hence, we have

$$\frac{F'}{F} P_1[f] Q_1[f] + \frac{F'}{F} P_2[f] Q_2[f] = P_1[f] (Q_1[f])' + Q_1[f] (P_1[f])' + P_2[f] (P_2[f])' + P_2[f] (P_2[f])$$

Therefore,

$$P_{1}[f]\left[\frac{F'}{F}Q_{1}[f] - (Q_{1}[f])' - \frac{(P_{1}[f])'Q_{1}[f]}{P_{1}[f]}\right] = P_{2}[f]\left[(Q_{2}[f])' - \frac{F'}{F}Q_{2}[f] + \frac{(P_{2}[f])'Q_{2}[f]}{P_{2}[f]}\right].$$

or, $P_{1}[f] \cdot \left\{\frac{1}{P_{2}[f]}\left[\frac{F'}{F}Q_{1}[f] - (Q_{1}[f])' - \frac{(P_{1}[f])'Q_{1}[f]}{P_{1}[f]}\right]\right\} = \left[(Q_{2}[f])' - \frac{F'}{F}Q_{2}[f] + \frac{(P_{2}[f])'Q_{2}[f]}{P_{2}[f]}\right],$
which is of the form, $P_{1}[f]Q^{*}[f] = Q[f],$
(4)

which is of the form, $P_1[I]Q^{*}[I] = Q[I]$,

where,
$$Q^{*}[f] = \frac{F'}{FP_{2}[f]}Q_{1}[f] - \frac{(Q_{1}[f])'}{P_{2}[f]} - \frac{(P_{1}[f])'Q_{1}[f]}{P_{1}[f]P_{2}[f]}$$

and $Q[f] = (Q_{2}[f])' - \frac{F'}{F}Q_{2}[f] + \frac{(P_{2}[f])'Q_{2}[f]}{P_{2}[f]}.$ (5)

Without loss of generality, let us assume that $Q[f] \neq 0$. By Lemma 2, m(r, Q * [f]) = S(r, f)Again from (4), $P_1[f] = \frac{Q[f]}{Q*[f]}$

Therefore,

e,
$$m(\mathbf{r}, \mathbf{P}_{1}[\mathbf{f}]) \le m(\mathbf{r}, \mathbf{Q}[\mathbf{f}]) + m\left(\mathbf{r}, \frac{1}{\mathbf{Q}^{*}[\mathbf{f}]}\right)$$
(6)

Again by Lemma 5 and(5), $m(r, Q[f]) \le \gamma_{Q_2} m(r, f) + S(r, f)$ (7) From the First Fundamental Theorem, we have

$$m\left(r,\frac{1}{Q^{*}[f]}\right) = N\left(r,Q^{*}[f]\right) - N\left(r,\frac{1}{Q^{*}[f]}\right) + S(r,f)$$
(8)

Also, all the poles of $Q^*[f]$ occur at the zeros of F, $P_1[f]$ and $P_2[f]$, the pole of f, and the zeros and poles of the co-efficients. Suppose z_0 is a pole of f of order m. Then z_0 is a pole $P_1[f]$ of order mn. From Lemma 4, z_0 is a pole of Q[f] of order atmost $m\gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)$

If
$$z_0$$
 is a pole of Q*[f], since Q*[f] = $\frac{Q[f]}{P_1[f]}$,
 z_0 is a pole of Q*[f] of order at most $m\gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1) - mn$
 $= (\Gamma_{Q_2} - \gamma_{Q_2} + 1) - m(n - \gamma_{Q_2})$
If z_0 is a pole of Q*[f] then since $\frac{1}{Q*[f]} = \frac{P_1[f]}{Q[f]}$,
 z_0 is a zero of $\frac{1}{Q^*[f]}$ of order at least $mn - \{m\gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)\}$

$$= m \Big(n - \gamma_{Q_2} \Big) - \Big(\Gamma_{Q_2} - \gamma_{Q_2} + 1 \Big)$$

Thus, we have,

$$N(\mathbf{r}, \mathbf{Q}^{*}[\mathbf{f}]) - N\left(\mathbf{r}, \frac{1}{\mathbf{Q}^{*}[\mathbf{f}]}\right) \leq \overline{N}\left(\mathbf{r}, \frac{1}{F}\right) + \overline{N}\left(\mathbf{r}, \frac{1}{P_{1}[\mathbf{f}]}\right) + 3\overline{N}\left(\mathbf{r}, \frac{1}{P_{2}[\mathbf{f}]}\right) + \left(\Gamma_{Q_{2}} - \gamma_{Q_{2}} + 1\right)\overline{N}\left(\mathbf{r}, \mathbf{f}\right) - \left(\mathbf{n} - \gamma_{Q_{2}}\right)N\left(\mathbf{r}, \mathbf{f}\right) + S(\mathbf{r}, \mathbf{f})$$

(9)

In view of (7), (8), (9), the equation (6) becomes,

$$\operatorname{nm}(\mathbf{r}, \mathbf{f}) \leq \gamma_{Q_2} \operatorname{m}(\mathbf{r}, \mathbf{f}) + \overline{N}\left(\mathbf{r}, \frac{1}{F}\right) + \overline{N}\left(\mathbf{r}, \frac{1}{P_1[\mathbf{f}]}\right) + 3\overline{N}\left(\mathbf{r}, \frac{1}{P_2[\mathbf{f}]}\right) \\ + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right)\overline{N}(\mathbf{r}, \mathbf{f}) - \left(\mathbf{n} - \gamma_{Q_2}\right)N(\mathbf{r}, \mathbf{f}) + S(\mathbf{r}, \mathbf{f}).$$

Hence, we have

$$(n - \gamma_{Q_2}) \Gamma(\mathbf{r}, \mathbf{f}) \leq \overline{N}\left(\mathbf{r}, \frac{1}{F}\right) + \overline{N}\left(\mathbf{r}, \frac{1}{P_1[\mathbf{f}]}\right) + 3\overline{N}\left(\mathbf{r}, \frac{1}{P_2[\mathbf{f}]}\right) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)\overline{N}(\mathbf{r}, \mathbf{f}) + S(\mathbf{r}, \mathbf{f}).$$

Hence the result.

Putting $P_1[f] = f^n$ and $P_2[f] = f^{n-1}$ in the above theorem, we get the following. **Theorem 2:** Let f, $Q_1[f], Q_2[f]$ be as defined in Theorem 1.

Let
$$F = f^n Q_1[f] + f^{n-1} Q_2[f]$$
.

Then,

$$(n - \gamma_{Q_2}) \Gamma(\mathbf{r}, \mathbf{f}) \leq \overline{N}\left(\mathbf{r}, \frac{1}{F}\right) + 4\overline{N}\left(\mathbf{r}, \frac{1}{f}\right) + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right)\overline{N}(\mathbf{r}, \mathbf{f}) + \mathbf{S}(\mathbf{r}, \mathbf{f})$$

If $P_2[f] \equiv 1$, we get the following.

Theorem 3: Let $P_1[f], Q_1[f]$ and $Q_2[f]$ be as defined in Theorem 1.

If $F = P_1[f]Q_1[f] + Q_2[f]$, then

$$(n - \gamma_{Q_2})T(r, f) \le \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{P_1[f]}\right) + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right)\overline{N}(r, f) + S(r, f)$$

which is the result of Hong Xun Yi [5].

As an application of theorem 2, we have the following.

Theorem 4: Let $F = f^n Q[f]$ where Q[f] is a differential polynomials in f.

If $n \ge 1$, then $\rho_F = \rho_f$ and $\lambda_F = \lambda_f$

Proof : If $F = f^n Q[f]$, then by theorem2, we have

$$n T(r, f) \le \overline{N}(r, \frac{1}{F}) + 4\overline{N}(r, \frac{1}{f}) + \overline{N}(r, f) + S(r, f).$$

Clearly, the zeros and poles of f are that of F respectively.

Therefore,
$$4\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,f\right) \le 4\overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,F\right) + S(r,f)$$

Therefore,
$$n T(r, f) \le \overline{N}(r, \frac{1}{F}) + 4\overline{N}(r, \frac{1}{f}) + \overline{N}(r, f) + S(r, f)$$

 $\le 6 T(r, F) + S(r, f)$

Therefore, $T(r, f) = O\{T(r, F)\}$ as $r \to \infty$. Also, we know that $T(r, F) = O\{T(r, f)\}$ as $r \to \infty$. Hence the Theorem.

Theorem 5: No transcendental meromorphic function f with $\overline{N}(r, f) + \overline{N}\left(r, \frac{1}{f}\right) = S(r, f)$

can satisfy an equation of the form

$$F = a_1 f^n Q_1[f] + a_2 f^{n-1} Q_2[f] + a_3 = 0$$

where $a_1 \neq 0$, $a_3 \neq 0$, n is a positive integer with $n > \gamma_{Q_2}$, $Q_1[f]$ and $Q_2[f]$ are differential polynomials in f.

Proof: Suppose there exists a transcendental meromorphic function f satisfying (9). Then by theorem 2, we have,

$$\begin{split} & \left(n - \gamma_{Q_2}\right) \Gamma(\mathbf{r}, \mathbf{f}) \leq \overline{N}\left(\mathbf{r}, \frac{1}{F}\right) + 4\overline{N}\left(\mathbf{r}, \frac{1}{f}\right) + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right) \overline{N}(\mathbf{r}, \mathbf{f}) + \mathbf{S}(\mathbf{r}, \mathbf{f}) \\ & \leq 5\overline{N}(\mathbf{r}, \frac{1}{f}) + \mathbf{S}(\mathbf{r}, \mathbf{f}) \\ & \text{Or, } n - \gamma_{Q_2} \leq \frac{5\overline{N}(\mathbf{r}, \frac{1}{f}) + \mathbf{S}(\mathbf{r}, \mathbf{f})}{T(\mathbf{r}, \mathbf{f})} = \frac{\mathbf{S}(\mathbf{r}, \mathbf{f})}{T(\mathbf{r}, \mathbf{f})} \text{ by hypothesis.} \end{split}$$

Or, $n - \gamma_{Q_2} \le 0$, which implies $n \le \gamma_{Q_2}$ which contradicts the choice of n. Hence the result.

This improves our earlier result namely

Theorem A [10]: No transcendental meromorphic function f with N(r, f) = S(r, f) can satisfy the equation $a_1(z)[f(z)]^n \pi_1(f) + a_2(z)[f(z)]^{n-1}\pi_2(f) + a_3(z) = 0$,

where $\pi_1(f)$ and $\pi_2(f)$ are differential polynomials of degree n and n-1 respectively and n > 1, and $Max \left\{ deg(f^{n-1}\pi_2(f)) \right\} < n$. and $a_1(z) \neq 0$.

(9)

Acknowledgement:

The second author is extremely thankful to University Grants Commission for the financial assistance given in the tenure of which this paper was prepared.

References

- BARKER G. P. and SINGH A. P. (1980): Commentarii mathematici universitatis : Sancti Pauli 29, 183. [1]
- [2] GUNTER FRANK and SIMON HELLERSTEIN (1986) : 'On the meromorphic solutions of non homogeneous linear differential equation with polynomial co-efficients', Proc. London Math. Soc. (3), 53, 407-428.
- HAYMAN W. K. (1964) : Meromorphic functions, Oxford Univ. Press, London. HONG-XUN YI (1990): 'On a result of Singh', Bull. Austral. Math. Soc. Vol. 41 (1990) 417-420. [3]
- [4]
- [5] HONG-XUN YI (1991): "On the value distribution of differential polynomials", Jl of Math. Analysis and applications 154, 318-328.
- [6] R. NEVANLINNA (1970) : Analytic functions, Springer-Verlag, New York.
- SINGH A. P. and DUKANE S. V. (1989): Some notes on differential polynomial proc. Nat. Acad. Sci. India 59 (A), II. [7]
- SINGH A. P. and RAJSHREE DHAR (1993): Bull. Cal. Math. Soc. 85, 171-176. [8]
- SUBHAS S. BHOOSNURMATH and CHHAYA M. HOMBALI (1998) : Fix points of certain differential polynomials, Proc. Ind. [9] Acad. Sci. Vol. 108, No. 2, June-1998, pp. 121-131.
- YANG C. C. (1972) : 'A note on Malmquist's theorem on first order differential equations, ordering differential equations', [10] Academic press, New York.
- [11]
- YANG LO, (1982) : Value distribution theory, Science Press, Beijing,.
 ZHAN-XIAOPING (1994): "Picard sets and value distributions for differential polynomials", Jl. of Math. Ana. and Appl. 182, 722-[12] 730.