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Abstract: Let G be a graph of order n with no isolated vertex. Let C(G,i) be the family of vertex covering sets in G
with cardinality i and let ¢(G, i) = |C(G, )|. The polynomial C(G, X) =Xz ¢(G, i)x? is called the vertex cover
polynomial of G. In this paper, we obtain some properties of the polynomial C(P2, x) and its coefficients. Also ,we
derive the reduction formula to calculate the vertex covering polynomial of square of path.
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I.  Introduction:
Let G = (V,E) be asimple graph. For any vertex v € V, the open neighborhood of v is the set N (v) =
{ueV/ uv e E} and the closed neighbourhood of v is the set N[v] = N(v) U {v}. For a set S< V, the open
neighborhood of S is N(S) =,%N (v) and the closed neighborhood of Sis  N[S] = N(S) U S.
Aset S € V is a vertex covering of G, if every edge uv € E is adjacent to atleast one vertex in S. The
vertex covering number, B(G), is the minimum cardinality of the minimum vertex covering sets in G. A vertex
covering set with cardinality B(G) is called a 3 —set.

We use [x], for the largest integer less than or equal to x and [x], for the smallest integer greater

than or equal to x.
Definition 1.1

The second power of a graph is a graph with the same set of vertices as G and it contains an edge
between two vertices if and only if there is a path of length atmost two between them. The second power of a graph
is also called its square.

Let P? be the square of the path P, (2™ power) with n vertices V (P?)
={1,23,...cinnn. n} and E(PH)={ (1,2) 2,3)...cevvrennnn. -1n),(1,3) 24).ccciiiiininnnn. (n-2,n)}.

Il.  Vertex covering sets of square of the path

In this section we state the vertex covering number of the square of the path and some of its properties.

Definition 2.1
Let P2 be the square of the path of order n with no isolated vertices. Let C(P?,1) be the family of

vertex covering sets of the graph P? with cardinality i and let ¢(P?,i) = |C( P?,1)|. We call the polynomial
C(P%,x) = Ztr';ﬁ(P%) c(P?,i) x' as the vertex covering polynomial of the graph P?.
Lemma 2.2

Let P2 be the square of the path P, with n vertices, then its vertex covering number is B( P?) =l2?"J
Lemma 2.3

Let P2, n>3 be the square of the path with n vertices, thenc (P?,i) =0 if i< [%"J ori > nand
c(B2i)>0if|[2|<i<n
Proof

Ifi< l%“J or i > n, then there is no vertex covering set of cardinality i. Therefore C(P?,1)=¢.
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By Lemma 2.2, the cardinality of the minimum vertex covering set is l%“] Therefore, ¢ (B2,1)>0 if i > lz—;Jand i <

n. Hence, we have c(P?,i) =0 if i <lz?nj or i>n, and c(P?,1)>0, if lz?nj <i<n

Lemma 2.4
Let P2, n > 2 be the square of the path with n vertices. Then
0] IfC(P2_,,i— 1) =¢and C (P2, i-2) = ¢, then C( P2,i) = ¢.
(ii) IfC(P2,,i—1)= C(P2,,i—1)=C (P2, i-1) = ¢, then C(P%,i) = ¢.
(iii) IfC(P2,,i—1)=¢and C (P25 ,i-2) #¢,then C(P3,i) # ¢.
Proof
Q) By hypothesis, i-1 < l@] ori-1>n-landi-2< l@] ori-2 > n-3. Therefore, i-1< lz’:zj or

2

i-1>n-landi-1< l
Hence C(PZ,i) = ¢.
(ii) By hypothesis, i-1 < [@J ori-1> n-1 andi-1< [@J ori-1 >n-2 andi-1< l@J ori-1> n-

3. Therefore, i-1 < lZ”S—_ZJ ori-1> n-1,andi-1< l?] ori-1>n-2and i-1< lZT;—_GJ ori-1> n-3.
Therefore, i-1< l?] or i-1 > n-1. Therefore, i< l%"] ori> n. Therefore, C(PZ,i)=¢.

(iii) By hypothesis, i-1< [%J or i-1> n-land [2"3—_6J < i-2 < n-3. Therefore, l2"3—'6J+ 1<i-1<n-2

"3_6J +1 ori-1>n-2. Therefore , i-1 < l2"3—_6J +1ori-1> n-1. Therefore, i< lz?"J ori> n.

and i1 < lz':zl. Hence, 12"3_6J+1 <il< lzn3_2J . Therefore, 12"3_6J+2 < i< l2"3_2J+1.
Therefore, [23—"J <i< [2”3‘21 + 1.Therefore,C(PZ, i) # ¢.
Theorem 2.5
Let P2, n = 2 be the square of path B, with n vertices. Suppose that C(P?,i) # ¢. Then  we have
(i) C(P?_,,i—1)# ¢ and C(P?_,,i —2) = ¢ if andonly if n=3k-1 and i=2k-1.
(i) C(P2,i—1)= C(P2;i—2)=¢ and C(P2_,,i—1) # ¢ if andonly if i=n.
(iii) CPA_,i—1)#¢,CP:,i—1)#¢ and C(P:_;i—1)=¢ if andonlyif i=n-1.
(iv) C(PE,,i—1)=¢ ,C(P:,,i—1)# ¢ and C(P?_5,i—1) # ¢ifandonlyif n=3k+1and i=2k
for some k.
(v) C(PE_,i—1)#¢,C(PE,,i—1) # ¢, and C(PZ_5,i — 1) # ¢ if and only if
222 +1<i< 02
3
Proof
(i) Assume C(P2_,,i—1) # ¢ and (P%_,,i—2) =¢. Since C(P:_,,i—2)=¢,wehave i-2>n-2
(or) i-2< l@] . Suppose i -2 >n-2,then i > n. Therefore, C(P?,i) = ¢, which is a contradiction.

2n—4

|fi-2<[@J then i <[ -

J +2 @)

Also , C(P2_,, i — 1) # ¢. Therefore, l@] <i—-1<n-1. Thatis lan_ZJ < i— 1 <n— 1. Therefore,
12n3—2J+1 <i<n (2)

2n—4

From (1) and (2) we have 12"3—_2J +1 <i< l . J+ 2 (3).

If n =+ 3k-1, then from (3) , we obtain an inequality of the form s < i < s, which is not possible .
when n = 3k- 1, (3), holds and in this case we obtain i = 2k -1 . Conversely , assume n = 3k-1 and i = 2k-1
then 2n =6k -2, 2n 4= 6k -6 and 2 =2k - 2. Therefore, "2 =2k -2 1)

Nowi= 2Kk-1, i-2= 2k—3<2k—2 =212
C(Pii—2) = ¢. Also X252 <2k —2 <3k — 2. Thatis |X|<i-1 <n-1.

Hence €(P2_,, i — 1) >0and hence, C(P%_,, i — 1) # ¢.
(i) Since C(P2_,,i—1)=¢ = C(P?_;,i—2),wehave i—1 > n-2or

. Therefore, i-2 < @ Therefore ,
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2(n-2)

i71<l

lzns_GJ +1lor i—1>n-2. Therefore, i—1<

Jand i-2< lz(n3_3)J ori—-2>n-3. Therefore i-1>n-2o0ri-1< lﬂj and i-1<
i-1 >n-2. Suppose |—1<l s 4J

theni-1 < |- e Li—1) = ¢, which isa contradiction .

Therefore, i-1 > n- 2, that is i > n-1 which implies that i > n.
Also, since C(PZ,i) # ¢ i<n. Combining these we get i=n
Conversely if i=n then C(P?_,,i—1) = C(P?_,, n—1) = ¢.
C(Pi_3i—=2)= C(Pisn—=2)=¢,andC(Pi_;,i—1)= C(Pi_,n—1)#¢.
(iii) Since C(PZ_5,i— 1) = ¢,we have i-1>n-3 or i-1 < |22

Since C(P2_y, i — 1) # pwe have [*2| <i—1 <n—1 thatis

lzn2J<L—1 <n-1 2
-3)
3

M

J, then (2) does not hold. Therefore, our assumption is wrong .
2(n-2)
3

Suppose i -1 <l

Therefore, i-1>n-3. Also,since C(P2_,,i —1) # ¢, l
But i-1>n - 3. Therefore, i-1 >n-2 3)
From (2) and (3), we get i -1 = n— 2.Therefore, i=n-1.
Conversely, ifi=n-1 thenc(P?_,,i—1)= C(P2_,n—2)%¢.
And C(P?_,,i—1) = C(P?_,,n—2) # ¢and

C(P?_;,i—1)= C(P:_;,n—2)=¢. since,n-2>n-3.We have C(P?_;,n—2) =¢ .Thatis C(P?_;,i—
N=¢.

. . 2 . . . 2(n-1)

(iv) Since C(P:_,,i—1)=¢,bylemma23i-1>n-1 (or)i-1< ITJ .

If i -1>n-1theni-1>n-2. Therefore, C(P?_,,i—1) = ¢ and C(P2_;,i — 1) = ¢ which is a contradiction .
Therefore i-1 <l@] (1)

Since €(P2_,,i — 1) # ¢, we have [@J <i-1<n2 (2

and since C(P2_;,i — 1) # ¢, we have l@] <i-1<n3 (3.

Since C(P2,i) # ¢ [2—"J <i<n-1 [2—"J —1<i-1<n2 (4)

By combining all the above in equalities, we have l J -1<i-1< l (5)

When n #3k+1,we get an inequality of the form s<i -1 <swhich is not possible.When n=3k+1, we have s< i-1 <
s+1.Therefore, (5) holdshood. In this case i = 2k .
Conversely, assume n=3k+1 and i =2k. Therefore, n—1=3kandi-1=2k-1,

2k —1 <2k = 2% Therefore, i— 1 < lz(" DJ that is C(P2_,,i — 1) # ¢ . Also,

@ < 2k-1 < 3k-1. Therefore, lz(n3_ )J <i-1 < n-2.Therefore,

C(Pipi—1) % ¢. Also |22 < 2k1 < 3k-2. Thatis |22 <i-1<n-3,

which implies C(P2_;,i—1) # ¢.

(v) Assume C(PZ_y,i = 1)# ¢, C(P3_,i— 1) # ¢ and C(PZ_q,i — 1) # ¢ Then we have|*"—| <
1<n-1and [@J <i-1<n-2 and l@] < i-1<n-3. Also, since C(PZ,i) + ¢, we have[z?"J -1<i-1<n-1
MJ +1< i< n-2.Conversely, supposel@] +1 < i <n-2. Therefore, l@] <i-1<n-3
and [@J <i-l1< n—2,l@] < i-1 <n-3and [@J < i-l1<n-L

From these, we obtain C(P2_;,i — 1) #¢ and C(P?_,,i— 1) #¢pand C(P2;,i—1) # ¢.

Theorem 2.6

Foreveryn>3 andi> lz_nJ we have

|<i-1<n-2

2n— ZJ

. Therefore, l

(i) If C(P,% 1,L —1) # ¢ and C(P,f 3,1 —2) = ¢, then C(P2, )= {{1,2.3...co....... n}}.
(ii) If (P2_,,i — 1) = ¢ and C(P2_s,i — 2) # ¢, Then C(P2, )= {X U {n-1, n-2}/ X € C(PZ_,,i — 2)}
(iii) If C’(P,f_l,i —1) # ¢ and C(P,f_3, —2) # ¢ then
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CPAD)={XU{n1,n2}/ XeC(P?,i-2u{Yyu{n}Yec(P?,i—1)}

Proof

0] Since C(P?_;,i —2) =¢ andC(P?_,,i — 1) # ¢, by lemma 2.5 (ii) i =n.

Therefore, C(P2,i) =C(P2,n) ={1,2,3............ n}.

(ii) Let C(P2_,,i—1)= ¢.Let X € C(P?_5,i—2).Then X=X, U{nn-1}/ X; € (C(P2_.,0).
Therefore X U {n-1,n-2}€ C(PZ,i) (D).

Therefore {X U {n-1,n-2} / X € C(P%_5,i — 2) € C(P?,i).

Conversely, assume Xe C(P?,i). Then, X is a vertex covering set of P2 with cardinality i. Elements of ¢(PZ2,i) end
with n-1, norn-1, n-2 or n-2, n. Suppose it ends with n-1,n. Then, X-{n} € C(P2_,,i — 1),which is a contradiction.
Suppose it ends with n-2 , n then X-{n} € C(P?_,,i — 1), which is also a contradiction. Therefore, the only
possibility is that it ends with n-1, n-2. Therefore, we can write X= X; U {n-1, n-2} where X; € C(P?_5,i — 2). This
implies C(P?,i) € {XU {n-1,n-2}/ Xe C(P2_5,i — 2)}. Therefore, C(P?,i) ={X U {n-1,n-2}/ X €
C(P?_5,i—2)}

(iii) The construction of (P2, i)from C(P2_,,i — 1) }and C(P2_;,i — 2) is as follows. Let X be an vertex
covering set of P2_; with cardinality i-2 . All the elements of C(P?_,i — 2) end with n-3 or n-4. Now adjoin n-1
and n-2 with X. Then X U {n-1,n-2} is a vertex covering set of C(P?,i). Therefore, {X

U {n-1, n-2}/ X€ C(P?_5,i — 2)} c C(P%, D).

Now, let us consider C(P2_,,i — 1). All the elements of ¢(P?_,,i — 1) end with

n-1or n-2. LetY be a vertex covering set of PZ_; with cardinality i-1. Now adjoin {n} with Y. Then Y u {n} €
C(PZ,i). Therefore, C(P2,i) < { X U {n-1,n-2}/

Xe C(P2;,i — 2)Yu{Y u{n¥Y e (P2 ,,i— 1)} 1)

Conversely, let us assume C(P2_;,i—1) # ¢ and C(P2_5,i — 2) # ¢.

Let X € ¢(P2_;,i — 2). Thenn-3,n-4 or n-3, n-5 or n-4,n-5 is in X.

If n-3,n-4,0rn-3,n-50rn-4,n-5 € X, then X u{n-1,n-2} € C(PZ, ).

Let Y € C(P2_,,i — 1), then atleast one vertex labeled n-1, n-3 orn-2,n-3isin Y .
Ifn-1,n-30rn-2,n-3 €Y,then Yu{n} € C(P2,i). Thus we have

{Xu{n-1,n-2}/ X € C(P?5,i—2)Yu{Yu{n¥ Y ec(P:,i—1)}c C(P%i) )
Combining (1) and (2), we get

C(PZ, i) ={Xu{n-1n-2}/ X€eCPr;i—2)}Fu{Y u{n¥Y e (P2, i—1)}
Theorem 2.7

If ¢(P?,i) isthe family of vertex covering sets of P? with cardinality i, where i >[2?nl then
IC(RZ, DI=|e(Pr_y i = V)| +[c(Pis, i - 2)].

Proof
From theorem 2.6, we consider the following three cases where i> l%"] Ife(Pr,,i—1) = ¢ and
C(P2;,i—2)=¢. Then C(P i) = &.
0] Ife(P2_,,i—1)=¢and C(P25,i — 2) # ¢ then C(PZ,i) = { X U {n-1, n-2}/ Xe C(P2_;,i — 2)}.
(i) IfC(Pr,,i—1) # ¢ and C(P?5,i — 2) # ¢, then

C(PA, 1) ={XU{n-1,n-2} Xe C(P?_5,i—2 )H}u{ru{n}Yec(P?,i—-1}
From the above construction, in each case , we obtain that
[C(PZ, D] = |C(Pi-y, i — D] +|C(Pi_3,i = 2)|.

I1l.  Vertex covering polynomial of P2
Let C(P? x) = Z?zlz_nl c (P?,i)x' be the vertex covering polynomial of path P? . In this section, we derive the
3

expression for C(P?x) .

Theorem 3.1
For every n > 4,C(P?,x) = xC(P2_, X) + x* C(P2_5,x) with initial values C(P?, x) = x,

C(P? x)=3x"+xX%.

Proof
We have c(P?,i)=c(P2_,,i—1)+c(P?;,i—2).
Therefore,c(P?,i)x! = c(P2_,,i — 1)x' + c(P?5,i — 2)x.
P )xt =Y c(Pr,,i— Dxt + Y c(Ps,i— 2)xt.
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YePZxt=xYc(P?,,i— Dxit+x2 Y (P25, i — 2)xi~2.

C(P?x) =x C(P2_;,X) + x2 C(P2_5,x), With initial values C(P2,X) =X, C(P?,X) = 3x% +x3

We obtain c(P?,i) for 1 < n < 15 as shown in the table 1.

Table 1
c(P2,i) the numbers of vertex covering set of P? with cardinality i.

p2 ]2 3 4 5 6 7 8 9 10 [11 12 13 [14 [15 [ 16
3 |3 1
4 |1 4 1
5 |0 3 5 1
6 |0 0 6 6
7 |o 0 1 10 1
8 |0 0 0 4 15 |8 1
9 |o 0 0 0 10 |21 |9 1
10 [0 0 0 0 1 20 |28 |10 |1
1 [0 0 0 0 0 5 3B [36 [11 |1
2 [0 0 0 0 0 0 15 |56 |45 [12 [1
13 [0 0 0 0 0 0 1 35 |8 |5 |13 [1
4 [0 0 0 0 0 0 0 70 [120 [66 |14 |1
15 [0 0 0 0 0 0 0 0 21 | 126 [165 |78 [15 |1
16 [0 0 0 0 0 0 0 1 56 | 210 [220 |91 |16 |1
In the following theorem, we obtain some properties of c( P2,i)
Theorem 3.2
The following properties hold for the coefficients of ¢ (P2, X):
I. ¢(P2,n) =1 forevery neN.
Il. ¢c(P?,n-1)=n forevery n€ N.
. c(PZn-2)=_[n? —5n +6] .n>4.
IV. c(P?,n-3)=(n-4)C,, forevery n>7.
V. c¢(P2,41,2n)=1, for every n€N.
VL. ¢(PZ,_;,2n-1)=n+1, forn>2.
VII. ¢(P2,,,,2n+1)=n+2, for every n € N.
Proof
M Since for any graph with n vertices €(G,n)=1, we have c(P?,n)=1.
(ii) Since C(P2,n — 1)={[n]-{x}/x€ [n]}, we have c(P2,n-1)=n.
(iii) To prove c(P2,n-2)= %[n2 —5n+6].

We apply induction on n. Whenn =4,
LH.S=c(P?n-2)=c(p?,4-2 )= c(p?,2)=1  (Fromthe table)
and RH.S=>[n? — 5n + 6] =2[16 — 20 + 6]=1

Therefore, the result is true for n=4. Now suppose that the result is true for all numbers less than n’ and

we prove it for n. By theorem 3.1, we have
c(P?n-2)=c(P2,n3) + c(P’;n4)
= ~[(n—1)?=5(n—1) + 6] +n-3
= %[n2+1—2n—5n+5+6+2n—6]
= % [n2 —5n+6].  Hence, the result is true for all n.
(iv) Toprove ¢c (P2, n—3)=(n-4)C;forn>7.
We apply induction on n. when n=7,
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L.H.S=c(P? n-3)=c(P?,7-3) = c(P?,4-2) =1 (From the table) and
R.H.S = (n-4) C3=(7-4)C53=3C; =1. Hence, the result is true for n=7. Now suppose that the result is true for
all numbers less than *n’ . Therefore, c(P2,m-3 )=(m-4)C;, 7<m <n-1.
Now to prove the result is true forn.
From Theorem 2.7, ¢(P?,n-3) = ¢(P>2_,,n-4)+ ¢(P?_;,n-5) = (n-5)C3+ c(P?_5,n-5)
= 9@, 110y — 3)2 — 5(n — 3) + 6]

1%2%3 2
_ n3-15n%+74n—-120

6
c(P?,n-3) = (n-4) C5. Therefore, the result is true for all n.
(v)Toprove c(PZ,.,,2n)=1 ,forevery ne N. We apply induction on n.
Suppose n=1. c¢(PZ,,1,2n) =c(PZ,2) =1 (From the table). Assume the result true for all natures numbers less
thann. c(P2,,,,2m) =1 for all m less than n. Now we prove that the result is true forn .
C(Pfns1,2n) = C(P3,2n-1)+ (P, _5,2n-2) = c(P§,,2n-1)+ c(P32(n_1)+1,2(n-1)):O+1:1
Therefore,c(PZ,,,,2n ) = 1 for all n €N.
(vi) Toprovec(P,_;,2n-1) =n+1,n>2.we apply induction on n.
Put n=2 .L.H.S = ¢(P2,_;,2n-1) = ¢(P2,3) =3 =2+1=n+1 (R.H.S). Hence the result is true for all natural numbers
less than n .c (PZ,_;,2m-1) = m+1, m<n . We prove that the result is true for n.
C(Pf-1,2n-1) = o(Ps_2,2n-2 )+ C(P5—4,2n-3 ) = O(P5iy_1y41,2(N-1) ) +C(Psy_4,2n-3)
= 1+ ¢(Piy-1y-1,2(n-1)-1)
=1+(n-1)+1=n+1. Hence, the resultis true forn.

Therefore , ¢(PZ,_;,2n-1 )=n+1 for all n> 2.
(vii) To prove ¢ (P2,;,,2n+1) =n+2,n=2.We apply induction onn.

Put n=1.L.H.S = ¢(P2,,,,2n+1) = ¢(PZ,3) =3 =1+2=n+2 (R.H.S)

Hence, the result is true for all natural numbers less than n.
Therefore, c(P2,,42,2m+1) =m+2, m<n . To prove that the result is true for n .
c(PZ,,5.:2n+1) = c(P2,,1,2n )+ c(PZ,_;,2n-1) =1+n+1=n+2
Hence, the result is true for n . Therefore, ¢(PZ,,,,2n+1 )=n+2 for all neN.

IV.  Conclusion
In this paper the vertex cover polynomial of square of path has been derived by identifying its vertex
covering sets. It also helps us to characterize the vertex covering sets and to find the number of vertex covering sets
of cardinality i . We can generalize this study to any power of the path and some interesting properties can be
obtained via the roots of the vertex cover polynomial of Bk .
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