On the vertex covering sets and vertex cover polynomials of square of paths

Ayyakutty Vijayan ${ }^{1}$, Thankappan Suseala Ida Helan ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, Nesamony Memorial Christian College , Marthandam, Kanyakumari District, Tamil Nadu, South India, ${ }^{2}$ Assistant Professor, Department of Mathematics, Bethlahem Institute of Engineering, Karunkal, Kanyakumari District, Tamil Nadu, South India,

Abstract

Let G be a graph of order n with no isolated vertex. Let $\mathcal{C}(G, i)$ be the family of vertex covering sets in G with cardinality i and let $c(G, i)=|\mathcal{C}(G, i)|$. The polynomial $C(G, x)=\sum_{i=\beta(G)}^{n} c(G, i) x^{i}$ is called the vertex cover polynomial of G. In this paper, we obtain some properties of the polynomial $C\left(P_{n}^{2}, x\right)$ and its coefficients. Also ,we derive the reduction formula to calculate the vertex covering polynomial of square of path.

Key word: Square of path, vertex covering set, vertex covering number, vertex covering polynomial.

I. Introduction:

Let $G=(V, E)$ be a simple graph. For any vertex $v \in V$, the open neighborhood of v is the set $N(v)=$ $\{u \in V / u v \in E\}$ and the closed neighbourhood of v is the set $N[v]=N(v) U\{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $\mathrm{N}(\mathrm{S})={ }_{v \in S}^{U} N(v)$ and the closed neighborhood of S is $\quad \mathrm{N}[\mathrm{S}]=\mathrm{N}(\mathrm{S})$ U S.

A set $S \subseteq V$ is a vertex covering of G, if every edge uv $\in E$ is adjacent to atleast one vertex in S. The vertex covering number, $\beta(\mathrm{G})$, is the minimum cardinality of the minimum vertex covering sets in G. A vertex covering set with cardinality $\beta(\mathrm{G})$ is called a β-set.

We use $[x]$, for the largest integer less than or equal to x and $[x]$, for the smallest integer greater than or equal to x .

Definition 1.1

The second power of a graph is a graph with the same set of vertices as G and it contains an edge between two vertices if and only if there is a path of length atmost two between them. The second power of a graph is also called its square.

Let P_{n}^{2} be the square of the path $P_{n}\left(2^{\text {nd }}\right.$ power) with n vertices $\mathrm{V}\left(P_{n}^{2}\right)$
$=\{1,2,3, \ldots \ldots \ldots \ldots \ldots n\}$ and $E\left(P_{n}^{2}\right)=\{(1,2)(2,3) \ldots \ldots \ldots \ldots \ldots .(n-1, n),(1,3) \quad(2,4) \ldots \ldots \ldots \ldots \ldots .(n-2, n)\}$.

II. Vertex covering sets of square of the path

In this section we state the vertex covering number of the square of the path and some of its properties.

Definition 2.1

Let P_{n}^{2} be the square of the path of order n with no isolated vertices. Let $\mathcal{C}\left(\mathrm{P}_{n}^{2}, \mathrm{i}\right)$ be the family of vertex covering sets of the graph P_{n}^{2} with cardinality i and let $\mathrm{c}\left(P_{n}^{2}, \mathrm{i}\right)=\left|\mathcal{C}\left(P_{n}^{2}, \mathrm{i}\right)\right|$. We call the polynomial $\mathrm{C}\left(P_{n}^{2}, \mathrm{x}\right)=\sum_{i=\beta\left(P_{n}^{2}\right)}^{n} c\left(P_{n}^{2}, \mathrm{i}\right) x^{i}$ as the vertex covering polynomial of the graph P_{n}^{2}.

Lemma 2.2

Let P_{n}^{2} be the square of the path P_{n} with n vertices, then its vertex covering number is $\beta\left(P_{n}^{2}\right)=\left[\frac{2 \mathrm{n}}{3}\right\rfloor$.

Lemma 2.3

Let $P_{n}^{2}, \mathrm{n} \geq 3$ be the square of the path with n vertices, then $\mathrm{c}\left(P_{n}^{2}, \mathrm{i}\right)=0$ if $\mathrm{i}<\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor$ or $\mathrm{i}>\mathrm{n}$ and $c\left(P_{n}^{2}, i\right)>0$ if $\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor \leq \mathrm{i} \leq \mathrm{n}$.
Proof
If $\mathrm{i}<\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor$ or $\mathrm{i}>\mathrm{n}$, then there is no vertex covering set of cardinality i . Therefore $\mathrm{C}\left(P_{n}^{2}, \mathrm{i}\right)=\phi$.

By Lemma 2.2, the cardinality of the minimum vertex covering set is $\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor$. Therefore, c $\left(P_{n}^{2}, \mathrm{i}\right)>0$ if $\mathrm{i} \geq\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor$ and $\mathrm{i} \leq$ n. Hence, we have $\mathrm{c}\left(P_{n}^{2}, \mathrm{i}\right)=0$ if $\mathrm{i}\left\langle\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor\right.$ or $\mathrm{i}>\mathrm{n}$, and $\mathrm{c}\left(P_{n}^{2}, \mathrm{i}\right)>0$, if $\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor \leq \mathrm{i} \leq \mathrm{n}$.

Lemma 2.4

Let $P_{n}^{2}, \mathrm{n} \geq 2$ be the square of the path with n vertices. Then
(i) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, \mathrm{i}-2\right)=\phi$, then $\mathcal{C}\left(P_{n}^{2}, i\right)=\phi$.
(ii) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)=\mathcal{C}\left(\mathrm{P}_{n-2}^{2}, i-1\right)=\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, \mathrm{i}-1\right)=\phi$, then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\phi$.
(iii) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, \mathrm{i}-2\right) \neq \phi$, then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right) \neq \phi$.

Proof

(i)

By hypothesis, i-1 < $\left\lfloor\frac{2(n-1)}{3}\right\rfloor$ or i-1>n-1 and i-2< $\left\lfloor\frac{2(n-3)}{3}\right\rfloor$ or i-2 $>\mathrm{n}-3$. Therefore, $\mathrm{i}-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-1$ and $\mathrm{i}-1<\left\lfloor\frac{2 n-6}{3}\right\rfloor+1$ or $\mathrm{i}-1>\mathrm{n}-2$. Therefore, $\mathrm{i}-1<\left\lfloor\frac{2 n-6}{3}\right\rfloor+1$ or $\mathrm{i}-1>\mathrm{n}-1$. Therefore, $\mathrm{i}<\left\lfloor\frac{2 n}{3}\right\rfloor$ or $\mathrm{i}>\mathrm{n}$. Hence $\mathcal{C}\left(P_{n}^{2}, i\right)=\phi$.
(ii)

By hypothesis, $\mathrm{i}-1<\left\lfloor\frac{2(n-1)}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-1$ and $\mathrm{i}-1<\left\lfloor\frac{2(n-2)}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-2$ and $\mathrm{i}-1<\left\lfloor\frac{2(n-3)}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}$ -
3. Therefore, $\mathrm{i}-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-1$, and $\mathrm{i}-1<\left\lfloor\frac{2 n-4}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-2$ and $\mathrm{i}-1<\left\lfloor\frac{2 n-6}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-3$.

Therefore, $\mathrm{i}-1<\left\lfloor\frac{2 n-6}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-1$. Therefore, $\mathrm{i}\left\langle\left\lfloor\frac{2 n}{3}\right\rfloor\right.$ or $\mathrm{i}>\mathrm{n}$. Therefore, $\mathcal{C}\left(P_{n}^{2}, i\right)=\phi$.
(iii) By hypothesis, i-1 < $\left\lfloor\frac{2 n-2}{3}\right\rfloor$ or i-1>n-1 and $\left\lfloor\frac{2 n-6}{3}\right\rfloor \leq \mathrm{i}-2 \leq \mathrm{n}-3$. Therefore, $\left\lfloor\frac{2 n-6}{3}\right\rfloor+1 \leq \mathrm{i}-1 \leq \mathrm{n}-2$ and $\quad \mathrm{i}-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$. Hence, $\left\lfloor\frac{2 n-6}{3}\right\rfloor+1 \leq \mathrm{i}-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$. Therefore, $\left\lfloor\frac{2 n-6}{3}\right\rfloor+2 \leq \mathrm{i}<\left\lfloor\frac{2 n-2}{3}\right\rfloor+1$.
Therefore, $\left\lfloor\frac{2 n}{3}\right\rfloor \leq \mathrm{i}<\left\lfloor\frac{2 n-2}{3}\right\rfloor+1$. Therefore, $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right) \neq \phi$.

Theorem 2.5

Let $P_{n}^{2}, \mathrm{n} \geq 2$ be the square of path P_{n} with n vertices. Suppose that $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right) \neq \phi$. Then we have
(i) $\quad \mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(P_{n-2}^{2}, i-2\right)=\phi$ if and only if $\mathrm{n}=3 \mathrm{k}-1$ and $\mathrm{i}=2 \mathrm{k}-1$.
(ii) $\quad \mathcal{C}\left(P_{n-2}^{2}, i-1\right)=\mathcal{C}\left(P_{n-3}^{2}, i-2\right)=\phi$ and $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$ if and only if $\mathrm{i}=\mathrm{n}$.
(iii) $\quad \mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi, \mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(P_{n-3}^{2}, i-1\right)=\phi$ if and only if $\mathrm{i}=\mathrm{n}-1$.
(iv) $\quad \mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\phi, \mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(P_{n-3}^{2}, i-1\right) \neq \phi$ if and only if $\mathrm{n}=3 \mathrm{k}+1$ and $\mathrm{i}=2 \mathrm{k}$
for some k.
(v) $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi, \mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$, and $\mathcal{C}\left(P_{n-3}^{2}, i-1\right) \neq \phi$ if and only if
$\left\lfloor\frac{2(n-1)}{3}\right\rfloor+1 \leq \mathrm{i} \leq \mathrm{n}-2$

Proof

(i) Assume $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$ and $\left(P_{n-2}^{2}, i-2\right)=\phi$. Since $\mathcal{C}\left(P_{n-2}^{2}, i-2\right)=\phi$, we have $\quad i-2>n-2$ (or) $\mathrm{i}-2<\left\lfloor\frac{2(n-2)}{3}\right\rfloor$. Suppose $\mathrm{i}-2>\mathrm{n}-2$, then $\mathrm{i}>\mathrm{n}$. Therefore, $\mathcal{C}\left(P_{n}^{2}, i\right)=\phi$, which is a contradiction.
If i $-2<\left\lfloor\frac{2(n-2)}{3}\right]$ then $\mathrm{i}<\left\lfloor\frac{2 n-4}{3}\right\rfloor+2$
(1)

Also , $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$. Therefore, $\left\lfloor\frac{2(n-1)}{3}\right] \leq i-1 \leq n-1$. That is $\left[\frac{2 n-2}{3}\right] \leq i-1 \leq n-1$. Therefore, $\left\lfloor\frac{2 n-2}{3}\right\rfloor+1 \leq i \leq n$
From (1) and (2) we have $\left\lfloor\frac{2 n-2}{3}\right\rfloor+1 \leq i<\left\lfloor\frac{2 n-4}{3}\right\rfloor+2$
If $\mathrm{n} \neq 3 \mathrm{k}-1$, then from (3), we obtain an inequality of the form $\mathrm{s} \leq i<s$, which is not possible.
when $\mathrm{n}=3 \mathrm{k}-1$, (3), holds and in this case we obtain $\mathrm{i}=2 \mathrm{k}-1$. Conversely, assume $\mathrm{n}=3 \mathrm{k}-1$ and $\mathrm{i}=2 \mathrm{k}-1$
then $2 \mathrm{n}=6 \mathrm{k}-2,2 \mathrm{n}-4=6 \mathrm{k}-6$ and $\frac{2 n-4}{3}=2 \mathrm{k}-2$. Therefore, $\frac{2(n-2)}{3}=2 \mathrm{k}-2$
Now $\mathrm{i}=2 \mathrm{k}-1$, $\mathrm{i}-2=2 \mathrm{k}-3<2 \mathrm{k}-2=\frac{2(n-2)}{3}$. Therefore, $\mathrm{i}-2<\frac{2(n-2)}{3}$. Therefore, $\mathcal{C}\left(P_{n-2}^{2}, i-2\right)=\phi$. Also $\left\lfloor\frac{2(3 k-2)}{3}\right\rfloor \leq 2 k-2 \leq 3 k-2$. That is $\left\lfloor\frac{2(n-1)}{3}\right\rfloor \leq i-1 \leq n-1$.
Hence $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)>0$ and hence, $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$.
(ii) \quad Since $\mathcal{C}\left(P_{n-2}^{2}, i-1\right)=\phi=\mathcal{C}\left(P_{n-3}^{2}, i-2\right)$, we have $\mathrm{i}-1>\mathrm{n}-2$ or
$\mathrm{i}-1<\left\lfloor\frac{2(n-2)}{3}\right\rfloor$ and $\mathrm{i}-2<\left\lfloor\frac{2(n-3)}{3}\right\rfloor$ or $\mathrm{i}-2>\mathrm{n}-3$. Therefore, $\mathrm{i}-1>\mathrm{n}-2$ or $\mathrm{i}-1<\left\lfloor\frac{2 n-4}{3}\right\rfloor$ and $\quad \mathrm{i}-1<$ $\left\lfloor\frac{2 n-6}{3}\right\rfloor+1$ or $\mathrm{i}-1>\mathrm{n}$ - 2 . Therefore, $\mathrm{i}-1<\left\lfloor\frac{2 n-4}{3}\right\rfloor$ or $\mathrm{i}-1>\mathrm{n}-2$. Suppose $\mathrm{i}-1<\left\lfloor\frac{2 n-4}{3}\right\rfloor$
then i $-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$. Therefore, $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\phi$, which is a contradiction.
Therefore, $\mathrm{i}-1>\mathrm{n}-2$, that is $\mathrm{i}>\mathrm{n}-1$ which implies that $\mathrm{i} \geq n$.
Also, since $\mathcal{C}\left(P_{n}^{2}, i\right) \neq \phi \quad \mathrm{i} \leq \mathrm{n}$. Combining these we get $\mathrm{i}=\mathrm{n}$.
Conversely if $\mathrm{i}=\mathrm{n}$ then $\mathcal{C}\left(P_{n-2}^{2}, i-1\right)=\mathcal{C}\left(P_{n-2}^{2}, n-1\right)=\phi$.
$\mathcal{C}\left(P_{n-3}^{2}, i-2\right)=\mathcal{C}\left(P_{n-3}^{2}, n-2\right)=\phi$, and $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\mathcal{C}\left(P_{n-1}^{2}, n-1\right) \neq \phi$.
(iii) Since $\mathcal{C}\left(P_{n-3}^{2}, i-1\right)=\phi$, we have i-1 $>\mathrm{n}$ - 3 or i-1 $\left\langle\frac{2(n-3)}{3}\right\rfloor$

Since $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$, we have $\left\lfloor\frac{2(n-1)}{3}\right\rfloor \leq i-1 \leq n-1$ that is
$\left\lfloor\frac{2 n-2}{3}\right\rfloor \leq i-1 \leq n-1$
Suppose i $-1<\left\lfloor\frac{2(n-3)}{3}\right\rfloor$, then (2) does not hold. Therefore, our assumption is wrong .
Therefore, $\mathrm{i}-1>\mathrm{n}-3$. Also, since $\mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi,\left\lfloor\frac{2(n-2)}{3}\right\rfloor \leq i-1 \leq n-2$.
But $\mathrm{i}-1>\mathrm{n}-3$. Therefore, $\mathrm{i}-1 \geq \mathrm{n}-2$
From (2) and (3), we get $\mathrm{i}-1=\mathrm{n}-2$. Therefore, $\mathrm{i}=\mathrm{n}-1$.
Conversely, if $\mathrm{i}=\mathrm{n}-1$, then $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\mathcal{C}\left(P_{n-1}^{2}, n-2\right) \neq \phi$.
And $\mathcal{C}\left(P_{n-2}^{2}, i-1\right)=\mathcal{C}\left(P_{n-2}^{2}, n-2\right) \neq \phi$ and
$\mathcal{C}\left(P_{n-3}^{2}, i-1\right)=\mathcal{C}\left(P_{n-3}^{2}, n-2\right),=\phi$. since, $\mathrm{n}-2>\mathrm{n}-3$. We have $\mathcal{C}\left(P_{n-3}^{2}, n-2\right)=\phi$. That is $\mathcal{C}\left(P_{n-3}^{2}, i-\right.$

1) $=\phi$.
(iv) \quad Since $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\phi$, by lemma $2.3 \mathrm{i}-1>\mathrm{n}-1$ (or) $\mathrm{i}-1<\left\lfloor\frac{2(n-1)}{3}\right\rfloor$.

If $\mathrm{i}-1>\mathrm{n}-1$ then $\mathrm{i}-1>\mathrm{n}-2$. Therefore, $\mathcal{C}\left(P_{n-2}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(P_{n-3}^{2}, i-1\right)=\phi$ which is a contradiction .
Therefore i-1 < $\left\lfloor\frac{2(n-2)}{3}\right\rfloor$
Since $\mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$, we have $\left\lfloor\frac{2(n-2)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-2$
and since $\mathcal{C}\left(P_{n-3}^{2}, i-1\right) \neq \phi$, we have $\left\lfloor\frac{2(n-3)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-3$
Since $\mathcal{C}\left(P_{n}^{2}, i\right) \neq \phi,\left\lfloor\frac{2 n}{3}\right\rfloor \leq i \leq \mathrm{n}-1,\left\lfloor\frac{2 n}{3}\right\rfloor-1 \leq \mathrm{i}-1 \leq \mathrm{n}-2$
By combining all the above in equalities, we have $\left\lfloor\frac{2 n}{3}\right\rfloor-1 \leq i-1<\left\lfloor\frac{2 n-2}{3}\right\rfloor$
When $n \neq 3 k+1$, we get an inequality of the form $s \leq i-1<s$ which is not possible. When $n=3 k+1$, we have $s \leq i-1<$ $\mathrm{s}+1$.Therefore, (5) holdshood. In this case $\mathrm{i}=2 \mathrm{k}$.
Conversely, assume $\mathrm{n}=3 \mathrm{k}+1$ and $\mathrm{i}=2 \mathrm{k}$. Therefore, $\mathrm{n}-1=3 \mathrm{k}$ and $\mathrm{i}-1=2 \mathrm{k}-1$,
$2 \mathrm{k}-1<2 \mathrm{k}=\frac{2(n-1)}{3}$, Therefore, $\mathrm{i}-1<\left\lfloor\frac{2(n-1)}{3}\right\rfloor$, that is $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$. Also,
$\frac{2(3 k-1)}{3} \leq 2 \mathrm{k}-1 \leq 3 \mathrm{k}-1$. Therefore, $\left\lfloor\frac{2(n-2)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-2$. Therefore,
$\mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$. Also $\left\lfloor\frac{2(3 k-2)}{3}\right\rfloor \leq 2 \mathrm{k}-1 \leq 3 \mathrm{k}-2$. That is $\quad\left\lfloor\frac{2(n-3)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-3$,
which implies $\mathcal{C}\left(P_{n-3}^{2}, i-1\right) \neq \phi$.
(v) Assume $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi, \mathcal{C}\left(P_{n-2}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-1\right) \neq \phi$. Then we have $\left[\frac{2(n-1)}{3}\right] \leq \mathrm{i}-$ $1 \leq \mathrm{n}-1$ and $\left\lfloor\frac{2(n-2)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-2$ and $\left\lfloor\frac{2(n-3)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-3$. Also, since $\mathcal{C}\left(P_{n}^{2}, i\right) \neq \phi$, we have $\left\lfloor\frac{2 n}{3}\right\rfloor-1 \leq \mathrm{i}-1 \leq \mathrm{n}-1$. Therefore, $\left\lfloor\frac{2(n-1)}{3}\right\rfloor+1 \leq \mathrm{i} \leq \mathrm{n}-2$. Conversely, suppose $\left\lfloor\frac{2(n-1)}{3}\right\rfloor+1 \leq \mathrm{i} \leq \mathrm{n}-2$. Therefore, $\left\lfloor\frac{2(n-1)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-3$ and $\left\lfloor\frac{2(n-2)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-2,\left\lfloor\frac{2(n-3)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-3$ and $\left\lfloor\frac{2(n-1)}{3}\right\rfloor \leq \mathrm{i}-1 \leq \mathrm{n}-1$.
From these, we obtain $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-2}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-1\right) \neq \phi$.
Theorem 2.6
For every $\mathrm{n} \geq 3$ and $\mathrm{i}>\left\lfloor\frac{2 n}{3}\right\rfloor$, we have
(i) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)=\phi$, then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\{\{1,2,3 \ldots \ldots \ldots \ldots . \mathrm{n}\}\}$.
(ii) If $\left(P_{n-1}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right) \neq \phi$, Then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\left\{\mathrm{XU}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right\}$
(iii) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right) \neq \phi$ then
$\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\left\{\mathrm{XU}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)\right\} \cup\left\{Y \cup\{n\} / \mathrm{Y} \in \mathcal{C}\left(P_{n-1}^{2}, i-1\right)\right\}$

Proof

(i) \quad Since $\mathcal{C}\left(P_{n-3}^{2}, i-2\right)=\phi$ and $\left(P_{n-1}^{2}, i-1\right) \neq \phi$, by lemma 2.5 (ii) $\mathrm{i}=\mathrm{n}$.

Therefore, $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\mathcal{C}\left(\mathrm{P}_{n}^{2}, n\right)=\{1,2,3 \ldots \ldots \ldots . . \mathrm{n}\}$.
(ii) Let $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\phi$. Let $\mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)$. Then $\mathrm{X}=X_{1} \mathrm{U}\{\mathrm{n}, \mathrm{n}-1\} / X_{1} \in\left(\mathcal{C}\left(P_{n-1}^{2}, i\right)\right.$.

Therefore $\mathrm{X} U\{\mathrm{n}-1, \mathrm{n}-2\} \in \mathcal{C}\left(P_{n}^{2}, i\right)$
(1).

Therefore $\left\{\mathrm{X} \mathrm{U}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right) \subseteq \mathcal{C}\left(P_{n}^{2}, i\right)\right.$.
Conversely, assume $\mathrm{X} \in \mathcal{C}\left(P_{n}^{2}, i\right)$. Then, X is a vertex covering set of P_{n}^{2} with cardinality i. Elements of $\mathcal{C}\left(P_{n}^{2}, i\right)$ end with $\mathrm{n}-1, \mathrm{n}$ or $\mathrm{n}-1, \mathrm{n}-2$ or $\mathrm{n}-2$, n . Suppose it ends with $\mathrm{n}-1, \mathrm{n}$. Then, $\mathrm{X}-\{\mathrm{n}\} \in \mathcal{C}\left(P_{n-1}^{2}, i-1\right)$, which is a contradiction. Suppose it ends with $\mathrm{n}-2, \mathrm{n}$ then $\mathrm{X}-\{\mathrm{n}\} \in \mathcal{C}\left(P_{n-1}^{2}, i-1\right)$, which is also a contradiction. Therefore, the only possibility is that it ends with $\mathrm{n}-1, \mathrm{n}-2$. Therefore, we can write $\mathrm{X}=X_{1} \mathrm{U}\{\mathrm{n}-1, \mathrm{n}-2\}$ where $X_{1} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)$. This implies $\mathcal{C}\left(P_{n}^{2}, i\right) \subseteq\left\{\mathrm{XU}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)\right\}$. Therefore, $\mathcal{C}\left(P_{n}^{2}, i\right)=\{\mathrm{X} \mathrm{U}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in$ $\left.\mathcal{C}\left(P_{n-3}^{2}, i-2\right)\right\}$.
(iii) The construction of $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)$ from $\left.\mathcal{C}\left(P_{n-1}^{2}, i-1\right)\right\}$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)$ is as follows. Let X be an vertex covering set of P_{n-3}^{2} with cardinality i-2. All the elements of $\mathcal{C}\left(P_{n-3}^{2}, i-2\right)$ end with $\mathrm{n}-3$ or $\mathrm{n}-4$. Now adjoin $\mathrm{n}-1$ and $n-2$ with X. Then $X U\{n-1, n-2\}$ is a vertex covering set of $\mathcal{C}\left(P_{n}^{2}, i\right)$.

Therefore, $\{\mathrm{X}$
$\left.\mathrm{U}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)\right\} \subset \mathcal{C}\left(P_{n}^{2}, i\right)$.
Now, let us consider $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)$. All the elements of $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)$ end with
$\mathrm{n}-1$ or $\mathrm{n}-2$. Let Y be a vertex covering set of P_{n-1}^{2} with cardinality i-1. Now adjoin $\{\mathrm{n}\}$ with Y . Then $\mathrm{Y} \cup\{\mathrm{n}\} \in$ $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)$. Therefore, $\mathrm{C}\left(\mathrm{P}_{n}^{2}, i\right) \subseteq\{\mathrm{X} \cup\{\mathrm{n}-1, \mathrm{n}-2\} /$
$\left.\mathrm{X} \in \mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right\} \cup\left\{\mathrm{Y} \cup\{\mathrm{n}\} / \mathrm{Y} \in \mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)\right\}$
Conversely, let us assume $\mathcal{C}\left(P_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(P_{n-3}^{2}, i-2\right) \neq \phi$.
Let $\mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)$. Then $\mathrm{n}-3, \mathrm{n}-4$ or $\mathrm{n}-3, \mathrm{n}-5$ or $\mathrm{n}-4, \mathrm{n}-5$ is in X .
If $\mathrm{n}-3, \mathrm{n}-4$, or $\mathrm{n}-3, \mathrm{n}-5$ or $\mathrm{n}-4, \mathrm{n}-5 \in X$, then $\mathrm{X} \cup\{\mathrm{n}-1, \mathrm{n}-2\} \in \mathcal{C}\left(P_{n}^{2}, i\right)$.
Let $Y \in \mathcal{C}\left(P_{n-1}^{2}, i-1\right)$, then atleast one vertex labeled $\mathrm{n}-1, \mathrm{n}-3$ or $\mathrm{n}-2, \mathrm{n}-3$ is in Y .
If n-1, n-3 or n-2, n-3 $\in \mathrm{Y}$, then $\mathrm{Y} \cup\{\mathrm{n}\} \in \mathcal{C}\left(P_{n}^{2}, i\right)$. Thus we have
$\left\{\mathrm{X} \cup\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right\} \cup\left\{\mathrm{Y} \cup\{\mathrm{n}\} / \mathrm{Y} \in \mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)\right\} \subseteq C\left(\mathrm{P}_{n}^{2}, i\right)$
Combining (1) and (2), we get
$\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\left\{\mathrm{X} \cup\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right\} \cup\left\{\mathrm{Y} \cup\{\mathrm{n}\} / \mathrm{Y} \in \mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)\right\}$
Theorem 2.7
If $\mathcal{C}\left(P_{n}^{2}, i\right)$ is the family of vertex covering sets of P_{n}^{2} with cardinality i, where $i>\left\lfloor\frac{2 n}{3}\right\rfloor$, then $\left|\mathcal{C}\left(P_{n}^{2}, i\right)\right|=\left|\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)\right|+\left|\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right|$.

Proof

From theorem 2.6, we consider the following three cases where $\mathrm{i} \geq\left\lfloor\frac{2 n}{3}\right\rfloor$. If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)=\phi$. Then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\Phi$.
(i) If $\mathcal{C}\left(P_{n-1}^{2}, i-1\right)=\phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right) \neq \phi$ then $\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\left\{\mathrm{X} \mathrm{U}\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right\}$.
(ii) If $\mathcal{C}\left(\mathrm{P}_{n-1}^{2}, i-1\right) \neq \phi$ and $\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right) \neq \phi$, then
$\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)=\left\{\mathrm{X} \cup\{\mathrm{n}-1, \mathrm{n}-2\} / \mathrm{X} \in \mathcal{C}\left(P_{n-3}^{2}, i-2\right)\right\} \cup\left\{Y \cup\{n\} / \mathrm{Y} \in \mathcal{C}\left(P_{n-1}^{2}, i-1\right)\right\}$
From the above construction, in each case, we obtain that
$\left|\mathcal{C}\left(\mathrm{P}_{n}^{2}, i\right)\right|=\left|\mathcal{C}\left(P_{n-1}^{2}, i-1\right)\right|+\left|\mathcal{C}\left(\mathrm{P}_{n-3}^{2}, i-2\right)\right|$.

III. Vertex covering polynomial of $\boldsymbol{P}_{\boldsymbol{n}}^{2}$

Let $\mathrm{C}\left(P_{n}^{2}, \mathrm{x}\right)=\sum_{i=\left[\frac{2 n}{3}\right]}^{n} c\left(\mathrm{P}_{n}^{2}, i\right) x^{i}$ be the vertex covering polynomial of path P_{n}^{2}. In this section, we derive the expression for $\mathrm{C}\left(P_{n}^{2}, \mathrm{x}\right)$.

Theorem 3.1

For every $\mathrm{n} \geq 4, \mathrm{C}\left(P_{n}^{2}, \mathrm{x}\right)=\mathrm{xC}\left(P_{n-1}^{2}, \mathrm{x}\right)+\mathrm{x}^{2} \mathrm{C}\left(P_{n-3}^{2}, \mathrm{x}\right)$ with initial values $\mathrm{C}\left(P_{2}^{2}, x\right)=x$,
$\mathrm{C}\left(P_{3}^{2}, \mathrm{x}\right)=3 \mathrm{x}^{2}+\mathrm{x}^{3}$.
Proof
We have $\mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right)=\mathrm{c}\left(\mathrm{P}_{n-1}^{2}, i-1\right)+\mathrm{c}\left(\mathrm{P}_{n-3}^{2}, i-2\right)$.
Therefore, $\mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right) x^{i}=\mathrm{c}\left(P_{n-1}^{2}, i-1\right) \mathrm{x}^{\mathrm{i}}+\mathrm{c}\left(\mathrm{P}_{n-3}^{2}, i-2\right) \mathrm{x}^{\mathrm{i}}$.
$\sum \mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right) x^{i}=\sum \mathrm{c}\left(\mathrm{P}_{n-1}^{2}, i-1\right) x^{i}+\sum \mathrm{c}\left(\mathrm{P}_{n-3}^{2}, i-2\right) x^{i}$.
$\sum \mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right) x^{i}=x \sum_{\mathrm{c}} \mathrm{c}\left(P_{n-1}^{2}, i-1\right) x^{i-1}+x^{2} \sum \mathrm{c}\left(\mathrm{P}_{n-3}^{2}, i-2\right) x^{i-2}$.
$\mathrm{C}\left(P_{n}^{2}, \mathrm{x}\right)=\mathrm{x} \mathrm{C}\left(P_{n-1}^{2}, \mathrm{x}\right)+x^{2} \mathrm{C}\left(P_{n-3}^{2}, \mathrm{x}\right)$, With initial values $\mathrm{C}\left(P_{2}^{2}, \mathrm{x}\right)=\mathrm{x}, \mathrm{C}\left(P_{3}^{2}, \mathrm{x}\right)=3 x^{2}+x^{3}$
We obtain $\mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right)$ for $1 \leq \mathrm{n} \leq 15$ as shown in the table 1 .
Table 1
$\mathrm{c}\left(\mathrm{P}_{n}^{2}, i\right)$ the numbers of vertex covering set of P_{n}^{2} with cardinality i .

P_{n}^{2}	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3	3	1													
4	1	4	1												
5	0	3	5	1											
6	0	0	6	6	1										
7	0	0	1	10	7	1									
8	0	0	0	4	15	8	1								
9	0	0	0	0	10	21	9	1							
10	0	0	0	0	1	20	28	10	1						
11	0	0	0	0	0	5	35	36	11	1					
12	0	0	0	0	0	0	15	56	45	12	1				
13	0	0	0	0	0	0	1	35	84	55	13	1			
14	0	0	0	0	0	0	0	6	70	120	66	14	1		
15	0	0	0	0	0	0	0	0	21	126	165	78	15	1	
16	0	0	0	0	0	0	0	0	1	56	210	220	91	16	1

In the following theorem, we obtain some properties of $\mathrm{c}\left(P_{n}^{2}, \mathrm{i}\right)$
Theorem 3.2
The following properties hold for the coefficients of $\mathrm{c}\left(P_{n}^{2}, \mathrm{x}\right)$:
I. $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}\right)=1$ for every $\mathrm{n} \in \mathrm{N}$.
II. $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-1\right)=\mathrm{n}$ for every $\mathrm{n} \in \mathrm{N}$.
III. $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-2\right)=\frac{1}{2}\left[n^{2}-5 n+6\right], \mathrm{n} \geq 4$.
IV. $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-3\right)=(\mathrm{n}-4) C_{3}$, for every $\mathrm{n} \geq 7$.
V. $c\left(P_{3 n+1}^{2}, 2 n\right)=1$, for every $n \in N$.
VI. $c\left(P_{3 n-1}^{2}, 2 n-1\right)=n+1$, for $n \geq 2$.
VII. $c\left(P_{3 n+2}^{2}, 2 n+1\right)=n+2$, for every $n \in N$.

Proof

(i) \quad Since for any graph with n vertices $\mathcal{C}(G, n)=1$, we have $c\left(P_{n}^{2}, n\right)=1$.
(ii) Since $\mathcal{C}\left(\mathrm{P}_{n}^{2}, n-1\right)=\{[n]-\{\mathrm{x}\} / \mathrm{x} \in[n]\}$, we have $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-1\right)=\mathrm{n}$.
(iii) To prove $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-2\right)=\frac{1}{2}\left[n^{2}-5 n+6\right]$.

We apply induction on n . When $\mathrm{n}=4$.
L.H.S $=\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-2\right)=\mathrm{c}\left(p_{4}^{2}, 4-2\right)=\mathrm{c}\left(p_{4}^{2}, 2\right)=1 \quad$ (From the table)
and R.H.S $=\frac{1}{2}\left[n^{2}-5 n+6\right]=\frac{1}{2}[16-20+6]=1$
Therefore, the result is true for $\mathrm{n}=4$. Now suppose that the result is true for all numbers less than ' n ' and we prove it for n . By theorem 3.1, we have

$$
\begin{aligned}
\mathrm{c}\left(P_{n}^{2}, \mathrm{n}-2\right)= & \mathrm{c}\left(\mathrm{P}_{n-1}^{2}, \mathrm{n}-3\right)+\mathrm{c}\left(\mathrm{P}_{n-3}^{2}, \mathrm{n}-4\right) \\
& =\frac{1}{2}\left[(n-1)^{2}-5(n-1)+6\right]+\mathrm{n}-3 \\
& =\frac{1}{2}\left[n^{2}+1-2 n-5 n+5+6+2 n-6\right] \\
& =\frac{1}{2}\left[n^{2}-5 n+6\right] . \quad \text { Hence, the result is true for all } \mathrm{n} .
\end{aligned}
$$

(iv) To prove $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-3\right)=(\mathrm{n}-4) C_{3}$ for $\mathrm{n} \geq 7$.

We apply induction on n. when $n=7$,
L.H.S $=c\left(P_{n}^{2}, n-3\right)=c\left(P_{7}^{2}, 7-3\right)=c\left(P_{7}^{2}, 4-2\right)=1 \quad$ (From the table) and R.H.S $=(\mathrm{n}-4) C_{3}=(7-4) C_{3}=3 C_{3}=1$. Hence, the result is true for $\mathrm{n}=7$. Now suppose that the result is true for all numbers less than ' n '. Therefore, $\mathrm{c}\left(\mathrm{P}_{m}^{2}, \mathrm{~m}-3\right)=(\mathrm{m}-4) C_{3}, 7 \leq m \leq \mathrm{n}-1$.
Now to prove the result is true for n.
From Theorem 2.7, $\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-3\right)=\mathrm{c}\left(\mathrm{P}_{n-1}^{2}, \mathrm{n}-4\right)+\mathrm{c}\left(\mathrm{P}_{n-3}^{2}, \mathrm{n}-5\right)=(\mathrm{n}-5) C_{3}+\mathrm{c}\left(\mathrm{P}_{n-3}^{2}, \mathrm{n}-5\right)$

$$
\begin{aligned}
= & \frac{(n-5)(n-6)(n-7)}{1 * 2 * 3}+\frac{1}{2}\left[(n-3)^{2}-5(n-3)+6\right] \\
= & \frac{n^{3}-15 n^{2}+74 n-120}{6}
\end{aligned}
$$

$\mathrm{c}\left(\mathrm{P}_{n}^{2}, \mathrm{n}-3\right)=(\mathrm{n}-4) C_{3}$. Therefore, the result is true for all n .
(v)To prove $c\left(P_{3 n+1}^{2}, 2 n\right)=1$, for every $n \in N$. We apply induction on n.

Suppose $\mathrm{n}=1$. $\mathrm{c}\left(\mathrm{P}_{3 n+1}^{2}, 2 \mathrm{n}\right)=\mathrm{c}\left(\mathrm{P}_{4}^{2}, 2\right)=1$ (From the table). Assume the result true for all natures numbers less than $\mathrm{n} . \mathrm{c}\left(\mathrm{P}_{3 m+1}^{2}, 2 \mathrm{~m}\right)=1 \quad$ for all m less than n . Now we prove that the result is true for n .
$\mathrm{c}\left(\mathrm{P}_{3 n+1}^{2}, 2 \mathrm{n}\right)=\mathrm{c}\left(\mathrm{P}_{3 n}^{2}, 2 \mathrm{n}-1\right)+\mathrm{c}\left(\mathrm{P}_{3 n-2}^{2}, 2 \mathrm{n}-2\right)=\mathrm{c}\left(\mathrm{P}_{3 n}^{2}, 2 \mathrm{n}-1\right)+\mathrm{c}\left(\mathrm{P}_{3(n-1)+1}^{2}, 2(\mathrm{n}-1)\right)=0+1=1$
Therefore, $\mathrm{c}\left(\mathrm{P}_{3 n+1}^{2}, 2 \mathrm{n}\right)=1$ for all $\mathrm{n} \in \mathrm{N}$.
(vi) To prove $\mathrm{c}\left(\mathrm{P}_{3 n-1}^{2}, 2 \mathrm{n}-1\right)=\mathrm{n}+1, \mathrm{n} \geq 2$. we apply induction on n .
Put $n=2$.L.H.S $=c\left(P_{3 n-1}^{2}, 2 n-1\right)=c\left(P_{5}^{2}, 3\right)=3=2+1=n+1$ (R.H.S). Hence the result is true for all natural numbers
less than $\mathrm{n} . \mathrm{c}\left(\mathrm{P}_{3 m-1}^{2}, 2 \mathrm{~m}-1\right)=\mathrm{m}+1, \mathrm{~m}<\mathrm{n}$. We prove that the result is true for n .
$\mathrm{c}\left(\mathrm{P}_{3 n-1}^{2}, 2 \mathrm{n}-1\right)=\mathrm{c}\left(\mathrm{P}_{3 n-2}^{2}, 2 \mathrm{n}-2\right)+\mathrm{c}\left(\mathrm{P}_{3 n-4}^{2}, 2 \mathrm{n}-3\right)=\mathrm{c}\left(\mathrm{P}_{3(n-1)+1}^{2}, 2(\mathrm{n}-1)\right)+\mathrm{c}\left(\mathrm{P}_{3 n-4}^{2}, 2 \mathrm{n}-3\right)$

$$
=1+\mathrm{c}\left(\mathrm{P}_{3(n-1)-1}^{2}, 2(\mathrm{n}-1)-1\right)
$$

$$
=1+(n-1)+1=n+1 \text {. Hence, the result is true for } n \text {. }
$$

Therefore, $\mathrm{c}\left(\mathrm{P}_{3 n-1}^{2}, 2 \mathrm{n}-1\right)=\mathrm{n}+1$ for all $\mathrm{n} \geq 2$.
(vii) To prove c $\left(\mathrm{P}_{3 n+2}^{2}, 2 \mathrm{n}+1\right)=\mathrm{n}+2, \mathrm{n} \geq 2$. We apply induction on n .

Put $\mathrm{n}=1$.L.H. $\mathrm{S}=\mathrm{c}\left(\mathrm{P}_{3 n+2}^{2}, 2 \mathrm{n}+1\right)=\mathrm{c}\left(\mathrm{P}_{5}^{2}, 3\right)=3=1+2=\mathrm{n}+2$ (R.H.S)
Hence, the result is true for all natural numbers less than n.
Therefore, $\mathrm{c}\left(\mathrm{P}_{3 m+2}^{2}, 2 \mathrm{~m}+1\right)=\mathrm{m}+2, \mathrm{~m}<\mathrm{n}$. To prove that the result is true for n .
$\mathrm{c}\left(\mathrm{P}_{3 n+2}^{2}, 2 \mathrm{n}+1\right)=\mathrm{c}\left(\mathrm{P}_{3 n+1}^{2}, 2 \mathrm{n}\right)+\mathrm{c}\left(\mathrm{P}_{3 n-1}^{2}, 2 \mathrm{n}-1\right)=1+\mathrm{n}+1=\mathrm{n}+2$
Hence, the result is true for n. Therefore, $c\left(P_{3 n+2}^{2}, 2 n+1\right)=n+2$ for all $n \in N$.

IV. Conclusion

In this paper the vertex cover polynomial of square of path has been derived by identifying its vertex covering sets. It also helps us to characterize the vertex covering sets and to find the number of vertex covering sets of cardinality i. We can generalize this study to any power of the path and some interesting properties can be obtained via the roots of the vertex cover polynomial of P_{n}^{k}.

References

[1] Alikhani .S andHamzeh Torabi.2010,on Domination polynomials of complete partite Graphs,worled Applied sciences Journal,9(1) : 2324
[2] Alikhani .Sand peng .y .H ,2008, domination sets and Domination polynomial of cycles, Global journal of pure and Applied Mathematics ,Vol. 4 no 2.
[3] Alikhani .Sand Peng .Y .H ,2009, Introduction to Domination polynomial of a graph ,ar xiv:0905.225|v| [math.co] 14 may.
[4] Chartrand. G and Zhang.P, 2005, Introduction to graph Theory,Mc Graw Hill.Higher education.
[5] F.M Dong,M.D..Hendy,K.L.Teo and C.H.C.Little ,The vertex - Cover Polynomial of a graph, Discrete Math .250(2002),71,78.
[6] Maryam Atapour and NasrinSoltankhah, 2009,on total Domination sets in Graphs, Int.J.Contemp.Math .Sciences, Volume .4,no .6, 253257.
[7] T.W.Haynes,S.T.Hedetniemi,andP.J.slater,Fundamental of Domination in graphs, vol. 208 of Monographs and Textbooks in pure and Applied Mathematics ,Marcel Dekker,new York,NY,USA,1998.
[8] Vijayan .A,SanalKumar.S.on Total Domination Polynomial of graphs, International Journal of Mathematics research. ISSN 0976-5840 Volume 4,Number 4 (2012), PP. 339-348

