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Abstract: Let G be a graph of order n with no isolated vertex. Let  (G,i) be the family of  vertex covering sets in G 

with cardinality i and let c(G, i) = |      |. The polynomial  C(G, x) =       
  c(G, i)   is called the vertex cover 

polynomial of G. In this paper, we obtain some properties of the polynomial C(  
   ) and its coefficients. Also ,we 

derive the reduction formula to calculate the vertex covering polynomial of square  of path.  
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I. Introduction: 
 Let G = (V,E) be  a simple graph. For any vertex v   V, the open neighborhood of v is the set    N (v) = 

{u V/ uv   E}  and the closed neighbourhood of v is the set N[v] = N(v) U {v}. For a set S   V, the open 

neighborhood of S is N(S) =        
  and the closed neighborhood of S is     N[S] = N(S) U S. 

 A set S    V is a vertex covering of G, if every edge uv    E is adjacent to atleast one vertex in S.  The 

vertex covering number,  (G), is the minimum cardinality of the minimum vertex covering sets in G. A vertex 

covering set with cardinality  (G) is called a   set. 

  We use ⌊ ⌋, for the largest integer less than or equal to x and ⌈ ⌉, for the smallest integer greater 

than or equal to x. 

Definition 1.1 
 The second power of a graph is a graph with the same set of vertices as G and it contains an edge 

between two vertices if and only if there is a path of length atmost two between them. The second power of a graph 

is also called its square. 

 Let   
   be the square of the path    (    power) with n vertices V (  

 )                           

={1,2,3,……………n} and E(  
  ={ (1,2) (2,3)……………..(n-1,n) , (1,3)    (2,4)………………(n-2,n)}. 

 

II. Vertex covering sets of square of the path 

 In this section we state the vertex covering number of the square of the path and some of  its  properties. 
Definition 2.1 
  Let   

   be the square of the path of order n with no isolated vertices. Let     
     be the family of 

vertex covering sets of the graph   
   with cardinality i and let c(  

     = |     
    |. We call the polynomial  

C(  
   ) =      

         
   (  

 )  as the vertex covering polynomial of the graph   
 . 

Lemma 2.2  

 Let    
  be the square of the path    with n vertices, then its vertex covering number is       

   =⌊
  

 
⌋. 

Lemma 2.3 

 Let   
  ,  n   3  be the square of the path with n vertices,  then c (  

   ) =0   if    i <  ⌊
  

 
⌋    or i  >  n and 

c(  
 ,i ) > 0 if ⌊

  

 
⌋ ≤  i  ≤  n. 

Proof 

 If i < ⌊
  

 
⌋ or i >  n, then there is no vertex covering set of cardinality i.  Therefore  C(  

    = . 
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By Lemma 2.2, the cardinality of the minimum vertex covering set is ⌊
  

 
⌋. Therefore, c (  

     >0 if i ≥ ⌊
  

 
⌋and i ≤  

n. Hence, we have c(  
     =0 if i <⌊

  

 
⌋ or i>n, and c(  

    >0, if ⌊
  

 
⌋       

 

Lemma 2.4  
 Let   

 , n ≥ 2 be the square of the path with n vertices. Then 

(i) If       
       =   and        

 , i-2) =  , then      
     =  . 

(ii) If  (    
       =        

       =       
 , i-1) =     then     

     =  . 

(iii) If  (     
       =   and         

  , i-2)  ≠  , then     
      ≠   . 

Proof 

(i) By hypothesis,  i-1 < ⌊
      

 
⌋ or i-1 > n-1 and i-2 < ⌊

      

 
⌋ or i-2  >  n-3. Therefore,  i-1 < ⌊

    

 
⌋ or 

 i-1 > n-1 and i-1 < ⌊
    

 
⌋  1 or i-1 > n-2. Therefore , i-1 < ⌊

    

 
⌋  1 or i-1 >  n-1. Therefore,  i < ⌊

  

 
⌋   or i >  n. 

Hence     
        

(ii) By hypothesis, i-1 < ⌊
      

 
⌋ or i-1 >  n-1  and i-1 < ⌊

      

 
⌋  or i-1  > n-2  and i-1 < ⌊

      

 
⌋ or i-1 >  n-

3. Therefore, i-1 < ⌊
    

 
⌋ or i-1 >  n-1 , and i-1 < ⌊

    

 
⌋ or i-1 > n-2 and  i-1 < ⌊

    

 
⌋ or i-1 >  n-3. 

Therefore,  i- 1 < ⌊
    

 
⌋  or  i-1 >  n-1. Therefore, i< ⌊

  

 
⌋ or i >  n. Therefore,   (  

    = . 

( iii)     By  hypothesis,  i-1 < ⌊
    

 
⌋ or  i-1 >  n-1 and  ⌊

    

 
⌋    i-2    n-3. Therefore, ⌊

    

 
⌋+ 1    i-1    n-2 

             and     i-1  < ⌊
    

 
⌋.  Hence, ⌊

    

 
⌋+1    i-1 < ⌊

    

 
 ⌋ .  Therefore,  ⌊

    

 
⌋+2    i< ⌊

    

 
⌋+1. 

             Therefore ⌊
  

 
⌋   i < ⌊

    

 
⌋ + 1.Therefore,    

        

 

Theorem 2.5                                                                                                                                                  
Let    

     n   2 be the square of path    with n vertices.  Suppose that      
         Then       we have                                                                                                                                

(i)       
          and        

          if  and only  if  n = 3k-1  and  i =2k-1. 

(ii)       
              

          and        
          if  and only  if  i = n. 

(iii)       
         ,       

          and        
          if  and only if   i = n-1. 

(iv)       
         ,      

          and        
         if and only if   n = 3k + 1 and  i= 2k 

for some k. 

(v)       
         ,       

        , and       
         if and only if                                               

⌊
      

 
⌋ + 1 ≤ i ≤  n-2 

 

Proof 
(i) Assume        

          and       
        .  Since        

        , we have      i – 2 > n-2 

(or)  i-2 < ⌊
      

 
⌋ .  Suppose i -2 > n–2 , then  i  > n. Therefore,     

      , which is a contradiction.  

 If i -2 <⌊
      

 
⌋  then i  < ⌊

    

 
⌋   +2          (1) 

Also ,       
        . Therefore, ⌊

      

 
⌋                 That is   ⌊

    

 
⌋            . Therefore,  

⌊
    

 
⌋+1                         (2) 

 From (1) and (2) we have  ⌊
    

 
⌋      i < ⌊

    

 
⌋+ 2                                 (3). 

If    n    3k-1, then from (3) , we obtain an inequality of the form  s      , which is not  possible .  

when n = 3k- 1 , (3), holds and in this case we obtain i = 2k -1 . Conversely , assume n = 3k-1 and i = 2k-1  

then 2n = 6k - 2, 2n – 4 = 6k – 6  and  
    

 
 = 2k – 2.   Therefore,   

      

 
 = 2k – 2            (1) 

Now i =  2k -1,  i- 2 =  2k – 3 < 2k – 2  = 
      

 
 . Therefore,  i-2 < 

      

 
  Therefore , 

      
        . Also ⌊

       

 
⌋            . That is   ⌊

      

 
⌋          . 

Hence        
       > 0 and hence,       

        . 

(ii)   Since        
          =        

      , we have  i – 1  >  n-2 or 
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 i – 1 <⌊
      

 
⌋and i  - 2 < ⌊

      

 
⌋ or  i – 2  > n – 3. Therefore, i -1 >  n- 2 or  i –1 < ⌊

    

 
⌋   and                      i-1 < 

⌊
    

 
⌋ + 1 or  i – 1 > n- 2.  Therefore,  i – 1 < ⌊

    

 
⌋ or i -1  > n-2.  Suppose  i – 1 < ⌊

    

 
⌋ 

then i - 1  < ⌊
    

 
⌋. Therefore,      

           which is a  contradiction . 

           Therefore, i-1 > n- 2 , that is i > n-1  which implies that i     
                Also, since     

         i   n.  Combining  these we get i= n . 

Conversely if  i= n  then        
              

        . 

      
              

        , and       
              

         . 

(iii)     Since        
        ,we have i-1 > n- 3 or i-1 < ⌊

      

 
⌋                (1) 

Since       
        ,we have  ⌊

      

 
⌋            that is 

⌊
    

 
⌋                            (2) 

Suppose i -1 <⌊
      

 
⌋, then (2) does not hold. Therefore, our assumption is wrong  . 

Therefore,  i-1 > n-3. Also,since        
         , ⌊

      

 
⌋          . 

But  i-1 > n – 3. Therefore, i-1  n-2                   (3) 

From (2) and (3), we get i -1 = n – 2.Therefore, i= n-1 . 

Conversely, if i = n-1 ,then       
              

         .  

And       
              

        and 

      
              

      ,=      since, n-2 > n – 3. We   have        
         . That is        

    
     . 

(iv)  Since        
           by lemma 2.3 i-1> n-1  (or) i -1 < ⌊

      

 
⌋ .  

If  i  -1 > n-1 then i -1 > n – 2. Therefore,       
         and       

          which is a contradiction . 

Therefore  i-1  <⌊
      

 
⌋                                        (1)  

Since        
           we have  ⌊

      

 
⌋    i -1   n-2       (2) 

and since        
          we have  ⌊

      

 
⌋   i-1   n-3     (3). 

Since      
       ,⌊

  

 
⌋      n – 1,⌊

  

 
⌋     i    n-2      (4) 

By combining all the above in equalities, we have  ⌊
  

 
⌋     i   ⌊

    

 
⌋                  (5) 

When n  3k+1,we  get an inequality  of the form  s i – 1 < s which is not possible.When n=3k+1, we have s  i-1 < 

s+1.Therefore,  (5) holdshood. In this case i = 2k . 

Conversely,  assume  n = 3k+1 and i = 2k. Therefore,  n – 1 = 3k and i – 1 = 2k-1 , 

2k – 1 < 2k = 
       

 
, Therefore, i – 1 < ⌊

      

 
⌋   that is       

            Also  
       

 
   2k-1    3k-1. Therefore, ⌊

      

 
⌋   i -1  ≤  n – 2.Therefore, 

      
            Also  ⌊

       

 
⌋   2k-1   3k-2. That is   ⌊

      

 
⌋   i -1  n– 3, 

which implies        
           

(v)  Assume       
       ≠           

         and       
           Then we have⌊

      

 
⌋   i -

1   n-1 and  ⌊
      

 
⌋   i -1   n-2  and ⌊

      

 
⌋     i -1   n-3. Also, since     

      , we have⌊
  

 
⌋ -1    i-1  n-1 

. Therefore, ⌊
      

 
⌋ +1    i     n - 2 . Conversely, suppose⌊

      

 
⌋ +1    i  n-2. Therefore ⌊

      

 
⌋    i-1    n-3 

and ⌊
      

 
⌋    i-1   n-2,⌊

      

 
⌋    i-1   n-3 and ⌊

      

 
⌋    i-1   n-1. 

From  these, we obtain       
       ≠   and       

         and       
           

Theorem 2.6 

 For every n ≥ 3 and i > ⌊
  

 
⌋, we have 

(i) If       
         and       

           then     
    = {{1,2,3………….n}}. 

(ii) If      
       =   and       

        , Then     
    = {X U {n-1, n-2}/ X        

      } 

(iii) If       
         and       

         then  
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     = { X U {n-1, n–2}  /  X        

              /Y       
      } 

Proof 
(i) Since       

       =            
        ≠     by lemma 2.5 (ii) i =n. 

Therefore,     
     =    

     {1,2,3…………n}. 

(ii) Let       
       =   . Let X        

        Then   X =     U {n,n-1} /          (      
    .  

Therefore     X U {n-1,n-2}     
                              (1). 

Therefore {X U {n-1,n-2} / X        
           

    .  

Conversely, assume X     
    .  Then, X is a vertex covering set of   

  with cardinality i. Elements of     
     end 

with n-1 , n or n-1 , n-2 or n-2, n. Suppose it ends with n-1,n. Then, X-{n}        
       which is a contradiction. 

Suppose it ends with n-2 , n then X-{n}        
        which is also a contradiction. Therefore, the only 

possibility is that it ends with n-1, n-2. Therefore, we can write X=    U {n-1, n-2} where          
      . This  

implies      
      {XU {n-1, n-2} / X       

      }. Therefore,      
     = {X U {n-1, n-2} /  X  

      
       }. 

(iii) The construction of     
    from        

       } and       
       is as follows. Let X be an vertex 

covering set of     
  with cardinality i-2 . All the elements of        

       end with n-3 or n-4. Now  adjoin n-1 

and n-2 with X. Then X U {n-1,n-2}  is a vertex covering set of      
    .                                              Therefore, {X 

U {n-1, n-2}/ X       
      }      

    . 

Now, let us consider        
      . All the elements of        

       end with 

 n-1 or  n-2.  Let Y be a vertex covering set of      
  with cardinality i-1. Now adjoin {n} with Y. Then Y    {n  

    
         Therefore,     

      { X   {n-1,n-2}/ 

X       
      } {Y  {n}/Y        

       }                                   (1) 

Conversely, let us assume         
         and       

        . 

 Let X        
         Then n-3, n-4  or  n-3, n-5 or n-4,n-5 is in X. 

 If  n-3 , n-4, or n-3 , n-5 or n-4 , n-5   X, then X  {n-1,n-2}      
    . 

Let          
         then atleast one vertex labeled n-1, n-3 or n-2 , n-3 is in Y . 

If n-1 , n-3 or n-2 , n-3   Y,then Y {n}      
    . Thus we have  

{X  {n-1, n-2} / X        
      }  {Y  {n}/ Y        

      }     
             (2) 

Combining  (1) and (2), we get 

    
      { X  {n-1,n-2} /  X        

      }  {Y  {n}/Y        
      } 

Theorem 2.7 

 If      
      is the family of vertex covering sets of  

  with cardinality i, where i >⌊
  

 
⌋  then 

|    
    |=|      

      | + |      
      |.   

Proof 

 From  theorem 2.6, we consider  the following  three cases where i ⌊
  

 
⌋.  If       

         and 

                           
            Then     

     =  . 

(i) If       
       =   and       

         then     
     = { X U {n-1, n-2}/ X       

      }. 

(ii) If       
         and       

          then  

    
     = { X U {n-1, n-2}/ X       

                    /Y       
      } 

From the above construction, in each case , we obtain that 

|    
    | = |      

      | + |      
      |.  

 

III. Vertex covering  polynomial of   
  

Let C(  
 ,x) =    

  ⌊
  

 
⌋

   
        be the  vertex covering polynomial of path    

  . In this section, we derive  the 

expression for  C(  
 ,x) .  

Theorem 3.1                                                                    
 For every n ≥ 4,C(  

 ,x) = xC(    
 ,x) + x

2
 C(    

 ,x) with initial values C(  
           

  C(  
   ,x) = 3x

2
+x

3
.                                                                                                                                                                                                                             

 Proof 
 We have      

     =       
       +       

      .  

 Therefore,    
       =       

         +       
        . 

      
       =        

         +        
        . 
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       =         

           +          
          . 

 C(  
 ,x) = x C(    

 ,x) +    C(    
 ,x), With initial values  C(  

 ,x) = x, C(  
 ,x) =      +    

 We obtain      
     for 1   n   15 as shown in the table 1. 

 

Table 1 

    
      the numbers of vertex covering set of   

   with cardinality i
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In the following theorem, we obtain some properties of c(   

 ,i) 

Theorem 3.2 
 The following properties hold for the coefficients of c (  

  , x): 

I. c(  
 ,n) = 1 for every  n   N. 

II.  c(  
 ,n-1)=n  for every  n    N. 

III. c(  
 ,n-2)=

 

 
[       ]  ,n   4. 

IV.  c(  
 ,n-3)= (n-4)     for every  n   7. 

V.  c(     
 ,2n)= 1,  for  every  n   N. 

VI. c(     
 ,2n-1)= n+1 ,  for n   2. 

VII. c(     
 ,2n+1)= n+2,  for every  n   N. 

                                                                                                                                                                                                                                              

Proof 
(i) Since for any graph with n vertices       =1 , we have      

      = 1. 

(ii) Since      
      ={[ ]-{x}/x [ ]} , we have  c(  

 ,n-1)=n. 

(iii) To prove  c(  
 ,n-2 ) =  

 

 
[       ]  

We apply  induction on n. When n = 4. 

L.H.S = c(  
 ,n-2 ) = c(  

 ,4-2  )=  c(  
 ,2 )=  1       (From the table) 

and R.H.S=
 

 
[       ] =

 

 
[       ]= 1 

 Therefore, the result is true for n=4.  Now suppose that the result is true for all numbers less than ’n’ and 

we prove it for n. By theorem 3.1, we have    

c(  
 ,n-2 ) = c(    

 ,n-3  )  +   c(    
 ,n-4 ) 

                     =  
 

 
[               ] + n-3 

 =  
 

 
[                   ] 

                     = 
 

 
[       ]  Hence, the result is true for all n. 

(iv)  To prove  c (  
      )=(n-4 )    for n   7 . 

We apply induction on n. when n=7, 

  
  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

3 3 1              

4 1 4 1             

5 0 3 5 1            

6 0 0 6 6 1           

7 0 0 1 10 7 1          

8 0 0 0 4 15 8 1         

9 0 0 0 0 10 21 9 1        

10 0 0 0 0 1 20 28 10 1       

11 0 0 0 0 0 5 35 36 11 1      

12 0 0 0 0 0 0 15 56 45 12 1     

13 0 0 0 0 0 0 1 35 84 55 13 1    

14 0 0 0 0 0 0 0 6 70 120 66 14 1   

15 0 0 0 0 0 0 0 0 21 126 165 78 15 1  

16 0 0 0 0 0 0 0 0 1 56 210 220 91 16 1 
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L.H.S = c(  
 , n-3 )= c(  

 ,7-3 ) = c(  
 ,4-2 ) =1    (From the table) and 

R.H.S = (n-4)   =(7-4)  =3    =1.  Hence, the result is true for n=7.               Now suppose that the result is true for 

all numbers less than ’n’ .  Therefore, c(  
 ,m-3 )=(m-4)  , 7     n-1. 

Now  to prove  the   result  is true  for n. 

From Theorem 2.7, c(  
 ,n-3 ) =  c(    

 ,n-4)+ c(    
 ,n-5 ) = (n-5)  + c(    

 ,n-5) 

            = 
                

     
+

 

 
[               ] 

          = 
               

 
 

c(  
 ,n-3 ) = (n-4)     Therefore, the result  is true for all n. 

(v)To prove   c(     
 ,2n ) =1  ,for every  n  N.   We apply induction on n.  

Suppose n=1.  c(      
 ,2n ) = c(  

  ,2) =1   (From  the table).  Assume the result true for all natures numbers  less 

than n . c(     
 ,2m ) =1    for all m less than n. Now we prove that the result is true  for n . 

 c(     
 ,2n ) = c(   

 ,2n-1)+ c(     
 ,2n-2) = c(   

 ,2n-1)+ c(         
 ,2(n-1))=0+1=1 

Therefore,c(     
 ,2n ) = 1 for all n  N. 

( vi)   To prove c(     
 ,2n-1 )   =n+1 ,n 2 . we   apply induction  on n.  

Put n=2 .L.H.S = c(     
 ,2n-1 ) = c(  

 ,3) =3 =2+1=n+1  (R.H.S).  Hence the result is true for  all natural  numbers  

less than n .c (     
 ,2m-1 ) = m+1, m<n  .  We  prove that the result is true for n. 

c(     
 ,2n-1 ) = c(     

 ,2n-2 )+ c(     
 ,2n-3 ) = c(         

 ,2(n-1) ) +c(     
 ,2n-3 ) 

        = 1+ c(         
 ,2(n-1 )-1) 

          =1+(n-1)+1=n+1.  Hence, the result is  true for n . 

 Therefore , c(     
 ,2n-1 )=n+1 for all n  . 

(vii)  To prove c (     
 ,2n+1 )   =n+2 , n 2 . We  apply induction  on n. 

 Put n=1.L.H.S = c(     
 ,2n+1) = c(  

 ,3) =3 =1+2=n+2  (R.H.S)  

 Hence, the result is true for  all natural  numbers  less than n. 

Therefore, c(     
 ,2m+1)  =m+2, m<n  .  To prove that the result is true for n . 

c(     
 ,2n+1 ) = c(     

 ,2n )+ c(     
 ,2n-1 ) =1+n+1=n+2 

Hence, the result is true for n . Therefore, c(     
 ,2n+1 )=n+2 for all n N. 

 

IV. Conclusion 
              In this paper the vertex cover polynomial of square of path has been derived by identifying its vertex 

covering sets. It also helps us to characterize the vertex covering sets and to find the number of vertex covering sets 

of cardinality i .  We can generalize this study to any power of the path and some interesting properties can be 

obtained via the roots of the vertex cover polynomial of    
  . 

 

References 
[1]    Alikhani .S andHamzeh Torabi.2010,on Domination polynomials of complete partite Graphs,worled Applied sciences Journal,9(1) : 23-

24 

[2]    Alikhani .Sand  peng .y .H ,2008, domination sets and Domination polynomial of       cycles, Global  journal of pure and Applied 
Mathematics  ,Vol.4 no 2. 

[3]    Alikhani .Sand  Peng .Y .H ,2009, Introduction to Domination polynomial of a graph ,ar xiv:0905.225|v| [math.co] 14  may. 

[4]     Chartrand . G and Zhang.P, 2005, Introduction to graph  Theory,Mc Graw Hill.Higher education. 
[5]     F.M Dong,M.D..Hendy,K.L.Teo and C.H.C.Little ,The vertex - Cover Polynomial  of a graph, Discrete Math .250(2002),71,78. 

[6]      Maryam Atapour and NasrinSoltankhah, 2009,on total Domination sets in Graphs, Int.J.Contemp.Math .Sciences, Volume .4,no .6, 253-

257. 

[7]    T.W.Haynes,S.T.Hedetniemi,andP.J.slater,Fundamental of Domination in graphs ,vol.208 of Monographs and Textbooks in pure and 

Applied Mathematics ,Marcel Dekker,new York,NY,USA,1998. 

[8]     Vijayan .A,SanalKumar.S.on Total Domination Polynomial of graphs, International Journal of Mathematics research. ISSN 0976-5840 
Volume 4,Number 4 (2012),   PP. 339-348 

 


