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Abstract: A numerical method based on parametric spline with adaptive parameter is given for the second-

order singularly perturbed two-point boundary value problems of the form 

0 1 ( ) ( ) ( ); ( ) ; ( )y p x y q x y r x y a y b         

The derived method is second-order and fourth-order convergence depending on the choice of the two 

parameters  and  . Error analysis of a method is briefly discussed. The method is tested on an example and 

the results found to be in agreement and support the predicted theory. 
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I.  Introduction 
Ordinary differential equations occur in many scientific disciplines, for instance in mechanics, 

chemistry, ecology, and economics. In addition, some methods in numerical partial differential equations 

convert the partial differential equation into an ordinary differential equation, which must then be solved. Some 

difference schemes for singularly perturbed differential equation are derived see [17] and [18]. In the paper we 

consider a second-order singularly perturbed boundary value problem 

''  ( ) ' ( ) ( ),y p x y q x y r x             (1) 

0 1( )   , ( )y a y b                                                      (2) 

where ( )p x , ( )q x and ( )r x  are continuous, bounded, real functions and are parameters such that it is known 

that problem (1)-(2) exhibits boundary layers at one or both ends of the interval depending on the choice of the 

function ( )p x  [6]. 

The problems in which a small parameter multiplies to a highest derivative arise in various yields of 

science and engineering, for instance fluid mechanics, fluid dynamics, elasticity, quantum mechanics, chemical 

reactor theory, hydrodynamics etc, see [15] and the references therein. Fyfe [7] have developed Bickley [16] 

methods by considering the case of (regular) linear boundary-value problems. Our scheme for the corresponding 

problem (i.e. 1  , ( ) 0p x  ) reduces to the Bickley scheme. However, it is well known since then that the 

cubic spline method of Bickley gives only 2( ) O h convergent approximations. But cubic spline itself is a fourth-

order process [5]. Recently, Aziz [6] suggested a nonpolynomial parametric spline method based on the spline 

trigonometric basis {1,  ,  cos ,  sin } Span x kx kx where k is the frequency of the trigonometric part of the splines 

function. In the present paper, we apply nonpolynomial parametric spline functions that have a polynomial and 

hyper trigonometric part to develop a new numerical method for obtaining smooth approximations to the 

solution of such above boundary value problems (1) and (2). The new method is of order two for arbitrary a and 

b such that 1

2
   . Our method performs better than the other collocation, finite difference, and spline 

methods of same order and thus represents an improvement over existing methods (see Refs. [15],[20]). 

The spline function we propose in this paper have the form {1,  ,  cosh ,  sinh } Span x kx kx where k is the 

frequency of the hyper trigonometric part of the splines function which can be real or pure imaginary and which 

will be used to raise the accuracy of the method. This approach has the advantage over finite difference methods 

[3] that it provides continuous approximations to not only for ( )y x , but also for ( )y x , ( )y x and higher 

derivatives at every point of the range of integration. Also the advantage of the method is that the coefficient 

matrix of the system is of the tridiagonal form, and the method has an order of convergence 4( )O h , where h is 

the step size. Section 2, we develop the new nonpolynomial parametric spline method for solving (1) and (2). 

The convergence analysis of the method is considered in Section 3. Section 4 contains numerical illustrations 

and results are compared with the method of Kadalbajoo and Bawa [10] to demonstrate the efficiency of the 

method. 
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II.  Derivation of the spline method 

     Let 
0 , , , ( - ) /N ix a x b x a ih h b a N     .  

A function ( , )S x  of class 2[ ,  ] C a b which interpolates ( ) y x at the mesh point depends on a parameter  , and 

reduces to cubic spline in [ ,  ] a b as 0  is termed as parametric cubic spline function. The parametric spline 

function ( , ) ( , )iS x S x   in
1[ , ]i ix x

, satisfying the differential equation 

   2 2 2 1

1 1( ) ( ) i i

i i i i i i

x x x x
s x s x M y M y

h h
   

 

    
        

   
                                          (3) 

where ( ), ( ) ( )i i i i iM y x s x y x  and   is a parameter and we denote to ( )iy x  by 
iy , 

Solving the differential equation (3) on the interval 
1[ , ]i ix x

, subject to ( )i i is x y  and 
1 1 1( )i i is x y    we 

obtain the parametric spline in the form 
2

1

12

( ) ( )
( ) sinh sinh

sinh

i i

i i i

k x x k x xh
s x M M

h hk k





  
  

 
       

2 2 2

1

1 12 2 2

( ) ( )
)i i

i i i i

x x x xh k k
M y M y

h hk h h



 

     
       

    
                                             (4) 

where   k h  

Differentiating equation (4) and letting x  tend to 
ix , we obtain 

          1 1

12 2 2

cosh
( ) ( )

sinh sinh

i i i i

i i i i

hM k hM y yh
S x M M

hk k k k k

 




                                                        (5) 

Considering the interval 
1[ , ]i ix x 

the parametric spline function take the form 

2

1

1 12

( ) ( )
( ) sinh sinh

sinh

i i

i i i

k x x k x xh
s x M M

h hk k



 

  
  

 
       

2 2 2

1

1 12 2 2

( ) ( )
)i i

i i i i

x x x xh k k
M y M y

h hk h h



 

     
       

    
                                                      (6) 

and the first derivative at 
ix x  given by 

  1 1

1 12 2 2

cosh
( ) ( )

sinh sinh

i i i i

i i i i

hM hM k y yh
S x M M

hk k k k k

 

 


                                                        (7) 

The continuity of the first derivative of ( , )S x   at 
i

x  in the form 
1( ) ( )i i is x s x

   . Equation (5) and (7) gives 

 2

1 1 1 12 2i i i i i iy y y h M M M                                                                          (8) 

where 

 2 1 cschk k k                                                                              (9)     

 2 1 cothk k k                                                                            (10) 

Now, from equation (1) substituting by  ( ) ' ( ) ( )i i i i i iM p x y q x y r x    , in equation (8) 

and using the following approximations for first derivative of y: 

                                       1 1 
2

i i

i

y y
y

h

 
                                                                                      (11) 

                                        1 1

1

3 4
 

2

i i i

i

y y y
y

h

 



 
                                                                                 (12)

 1 1

1

4 3
 

2

i i i

i

y y y
y

h

 



  
                                                                                 (13) 

    We arrive at the following linear system which may be solved to get the approximations y_{i} of the 

solutions ( )y x  at   ix , 1,2,3,..., 1i N   respectively: 

2 2

1 1 1 1 1 1

2

1 1 1 1

2

1 1

3
( ) ( 2 2 2 2 )
2 2

3
( )

2 2

( 2 ), 1,2,3,..., 1. (14)

i i i i i i i i i

i i i i i

i i i

h h
y p h p p h q y p h q h p

h h
y p h q h p p

h r r r i N


       

    

  

     

   

 

        

    

     
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    When =1/6, =1/3  ; our method reduces to the Kadalbajoo and Bawa's method [10] for uniform mesh. For  

1, 0p    (regular problem); our method reduces to the well-known Bickley scheme [16] for the regular 

problem. When 2 2    the method reduced to Aziz and Khan's method [15]. 

 

III.   Convergence of the method 
     Convergence of the method introduced by the following theorem. 

Theorem (1): 

 The method introduced by difference equation (14) for solving the boundary 

value problem (1) for ( ) 0q x   gives a second- order convergent solution for arbitrary ,   

with 1/ 2   and a fourth-order convergent solution for 1/12, 5/12   . 

Proof 

The system (14) can be written in the matrix form 
2AY h R C                                                               (15) 

where 
,( )i iA a  is tridiagonal matrix of order 1N  , with 

, 1i ia 
is the coefficient of  

1, 2,3,..., 1iy i N   , 

,i ia is the coefficient of  , 1,2,3,..., 1iy i N  , 

, 1i ia 
is the coefficient of  1, 1,2,3,..., 2iy i N   , 

and 
1 2 3 1( , , ,..., )T

NR r r r r   where 2

1 1( 2 ), 1,2,..., 1,i i i ir h r r r i N          

and 
1 1( ,0,0,0,..., )T

NC c c   

where 

 

2

1 0 2 1 0 0

2

1 1 1 2

3
( )

2 2

3
( )

2 2
N N N N N

h h
c p h p p h q

h h
c p h q h p p


    

       

    

    

 

If we consider that 

1 2 3 1( ( ), ( ), ( ),..., ( ))T

NY y x y x y x y x   

denotes to the exact solution vector, and 

1 2 1( ) ( ( ), ( ),,..., ( ))T

NT h T h T h T h  

is the local truncation error vector then we have 
2 ( )AY h R T h C                                                      (16) 

Where             
4 6

(4) (6)

1 1( ) ( 1 12 ) ( ) ( 1 30 ) ( ),
12 360

i i i i i i

h h
T h y y x x

 
                                                (17) 

for any choice of   and   whose sum is ½, except 1/12, 5/12   , 

6
(6)

1 1( ) ( ) ( ),
240

i i i i i

h
T h y x x


                                                       (18) 

From (15) and (16) we get 

( ) ( )A Y Y T h                                                                       (19) 

( ) ( )A E T h                                                                                       (20) 

where 1 2( , ,..., )T

NE Y Y e e e    

From equation (14) we have 
1

2 2

1 1. 1 0 2 2 1

1

1
2 2

2 1. 1 1

1

1
2

1 1. 2 2

1

2
2

1 1
3
2

3 1
2 2

1
2

2 ,

( 2 ) , 2,3,..., 2,

N

j

j

N

j i i i i

j

N

N j N N N

j

h q
N N

hp

hp hp

hp

S a h q h q hp

S a h q q q h i N

S a h q hp 

 



   

   

  







 





  




 

      

      

     







 

We can chose h sufficiently small so that the matrix A  is irreducible and monotone [4]. 

It follows that 1A  exist and its elements are nonnegative. Hence from equation ( 20) we have 
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1 ( )E A T h                                                                   (21) 

and from the theory of matrices we have 
1

,

1

1, 1,2,..., 1
N

k i i

i

a S k N




                                                             (22) 

where ,k ia is the ( , )k i element of the matrix 1A . Therefore 

1

,
2 2

1 1 1

1 1 1
,

min

N

k i

i i N i m m

a
S h B h B



   

                                                           (23) 

for some m  between 1 and 1N   

From equations (17), (21) and (22) we have 
1

,

1

( ), 1,2,...., 1
N

j ij i

i

e a T h j N




                                                                  (24) 

and therefore 
2

, 1,2,...., 1j

m

Kh
e j N

B
                                                                         (25)  

where K is a constant, therefore 
2( )E O h                                                                                   (26) 

which shows that the error is of order 
2h from which the convergence of the method is of second order. 

When 1/12, 5/12   equation (17) show that 

4

, 1,2,...., 1j

m

Kh
e j N

B
                                                                         (27) 

Therefore 
2( )E O h                                                                                      (28) 

Hence the method is of forth order convergence 

It is worthy to mention here that the right form for equation (13) in (17) 
2AY h R C   also the right form for equation (14) is  2 ( )AY h R T h C    hence 

2

1 1 0

2

1 1

3
2

1
2

1
)

1 0 2 1 2 02

3 1
)

1 2 2 1 12

(

(N N

hp hp hp

hp hp hp
N N N

c h q

c h q






 


 

 

 

 

 
 

  

  
 

 

IV.   Numerical example and discussion 
We consider a numerical example t illustrates the performance of our present method and supports the 

theoretical analysis for second and fourth order convergence. All the computations were carried out using 

double precision arithmetic in order to keep the rounding errors negligible as compared to the discretization 

errors. 

Example 1 (Doolan et al.[19] ) 
2 2cos ( ) 2 cos(2 );

(0) (1) 0

y y x x

y y

      

 
 

The exact solution is given by 

 
2( ) exp( (1 ) / ) exp( / / 1 exp( 1/ cos ( )y x x x x             

   
 

since ( ) 0p x    and  ( ) 1 0.q x   q(x) = 1 > 0, 

The approximate solution, Exact solution and the error at the nodal points with 1  is 

tabulated in the following table: 

ix  iy  Exact iy  error 

0.0 0 0 0 

0.1 -0.149501 -0.149521 2.00819E-5 

0.2 -0.0683609 -0.0682971 6.37847E-5 

0.3 0.130901 0.131097 1.95818E-4 

0.4 0.319183 0.319493 3.10347E-4 

0.5 0.394771 0.395126 3.55134E-4 

0.6 0.319183 0.319493 3.10347E-4 
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0.7 0.130901 0.131097 1.95818E-4 

0.8 -0.0683609 -0.0682971 6.37847E-5 

0.9 -0.149501 -0.149521 2.00819E-5 

1.0 0 0 0 

 

Maximum Absolute Error = 3.55134 E-4 

We have described a numerical method for solving singular perturbation problems using parametric spline 

function. It is a practical method and can easily be implemented on a computer to solve such problem. The 

numerical calculations were carried out by mathematica program. 
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