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Abstract: This paper deals with describing application of g-theory in different fields of mathematics and future
areas where its use can be extended .
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I.  Introduction

Basic hypergeometric series are called g-analogues (basic analogues or g-extensions) of
hypergeometric series.

g-hypergeometric series, are g-analog generalizations of generalized hypergeometric series, and are in
turn generalized by elliptic hypergeometric series. A series x, is called hypergeometric if the ratio of successive
terms Xn+1/X, is a rational function of n. If the ratio of successive terms is a rational function of g", then the series
is called a basic hypergeometric series. The number g is called the base or parameter which lies between 0 and
1.Value of g determines accuracy of analogue of any classical function.

1.1 Basic Differentiation operator

Dy ()= <= (1)
1.2 g-Integration
fff(X)dqx =1 -bXro0q" f(@"h) —aXi-oq" fg"a)} )

1.3 g-exponential function

A whole family of g exponential function can be defined as

E(q,p:%)= Zrzox” ¢ V/[1; q]! ®)
depending upon value of B i.e. =0, p=1/2 and B=1/4 repectively.

Il. g-analogue of some statistical functions
2.1 Forward Differences
If Yo,Y1.Y2,...,yn denote a set of values of y, where y=f(z),then yi-Yo,Y2-Y1,...,¥yn-Yn1 are called differences of y,
where A is called forward difference operator and V is called backward difference operator and as 0<q<1,

f(2)>f(q2).

Af(z) = f(2) — f(q2) (4)
A*f(2) = Af(2) — Af(qz) = f(q°2) — 2f(q2) + f(2) %)
Nf(2) = f(q°2) — 3f(q%2) +3f(q2) — f(2) (6)
A*f(2) = f(q*2) — 4f(q%2) + 6f(q*2) — 4f(qz) + f(2) (7
2.2 Backward Differences

Vf(qz) = f(qz) — f(2) (8)
Vf(q®z) = f(q°2) - f(q2) ©)
V2f(q*z) = Vf(q*2) — Vf(qz) = f(q*2) — 2f(q2) + f (2) (10)
Vf(q®z) = f(q°2) —3f(q°2) + 3f(qz) — f(2) (11)

2.3 g -analogue of Moment Generating Function
Let X be a random variable.

Then ,EXPEC (Eq(tx)) — EXPEC (z
where EXPEC is expected value.

r

t2 t
) = Tt oty o (12)

(tx)"
[r:q]!

.
The coefficient of ﬁ in the expression is ., the '™ moment of X about origin.
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MGF for discrete random variable with probability distribution

X: X1 X2 XN
P(x):  pl p2ue...pn
M(t) = EXPEC(E(q,tx)) = X E, (tX)p; (13)

MGF for a Continuous Random Variable
Let X be a continuous random variable with probability density function f(x)
—o < x <o

M(t) = Expec(E(q,tx)) = [~ E(q, tx)f (x)d(qx) (14)
Expec(E(q,tx)) is mgf about origin.

Expec(E(q,t(x-a)) is mgf about point a.

Expec(E(q, t(x — X)) is mgf about origin.

Properties of mgf

Expec (E(q, t(x + y))) = Expec(E(q,tx)) + Expec(E(q,ty)) (15)
Expec (Eq (t(x + y))) = Expec (Eq (tx)) + Expec (Eq (t}’)) (16)
Expec (Eq(t(u + c))) = E,(tu) + Expec(E4(tc)) an

2.4 g -Distribution Function

If Fp(x) = ffwf(x)d(qx) = P(X < x) then the function F;(x) is the probability that the value of the variable
will be less or equal to x. Thus, F,(x) = P(X < x) and

F,(b) — Fy(a) = f:f(x)d(qx) =P(a <X <b) .F,(x) is called the cumulative distribution function of X or
simply distribution function.

Properties
F;(—=o0) = 0and F;() =1 (18)

2.5 g- analogue of Differential Equation
Solution of second order linear differential equation with constant coefficients

Diy —a;Dgy +a, =0 (19)
If auxiliary equation has real and distinct roots m; and m,, general solution is

y = A E;(m;X)+BE,(m,X) (20)
or

y = A E(q; m;x)+BE (q; m,X) (21)
or

y = AE(1/q;mVqx)+BE (1/g; myVqx) (22)
Real and equal roots

If ml=m2=m

y= (Ax+B) E4(mx) or y= (Ax+B) E(q;mV/qx) or y= (Ax+B) E(L1/q;mVqx) (23)

Complex Conjugate Roots
If @ and B be the real and imaginary parts of the roots then general solution will take form

y = C1E(q; a\[qx)sin(q; ( Bx+C2) (24)

2.6 Basic Analogue of Integral Transforms

2.6.1 g-Laplace Transform
f(s) = J, F()E(q,—st)d(qt) (25)
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2.6.2 g-Fourier Transform
f(s) = [7, F(OE(q, —ist)d(qt)
2.6.3g-MellinTransform

f(s) = [, F(©)¢*~'d(qt)
2.6.4 g-HankelTransform

f(s) = [ F©Ot], (st)d(qt)

2.7 Basic Analogue of Newton Cotes Integration

(26)

(@7)

(28)

I:fai7 w(x)f(x)dgx = Yi_omy f(x,) where X;,Xs,...,x, are nodes distributed within limits of integration.

Ry=A—-bXroq” w(@ b)f(q"h) — aXr-oq" w(q@ a)f(q"a)} — Xi—omu f (xx)

R, is the error term.

If w(x) =1 and nodes x,’ are distributed in [a,b] with xo=a, x,=b and h =(b-a)/n, x, =x, +kh, k € n.

(1— b X0 q" w(g™b)f(q"h) — aXioq" w(g a)f(q"a)} = Lo @ @)

[2;q]!
where &2 =p,
[2;q]!

By putting w(x)=1 ,n=1,f(x)=x in f: w(x)f (x)dgx = XR_omy f(x,) We get,

_ _ (b-a)
Mo =My =777
[y wef ()dax =2 (F(@) + (b))
which is analogue of Trapezmdal Rule.
Rn=—- 2f ©

= 12422 (q T2022(q-12 (f(q*8) — [2;q1f (@®) + qf ()]

—h® [a2£(a18) +41 £ (a38) 01 f(a1 428~ d2£(d1 429)]

712 (a1-92)28°

By putting n=2 and n=3 we can easily get analogue for Simpson’s 1/3 and Simpsons’s 3/8 rule.

2.7.1 g-Simpson’s 1/3 Rule

By putting w(x)=1 ,n=2,f(x)=x mf w(x)f(x)dqx = Yi_omy f(xx)
we get,

_ (b-a) _ 4(b-a) _ (b—a)
Mo =" "™ = g1 2 T

2.7.2 g-Simpsons’s 3/8 Rule

By putting w(x)=1,n=3,f(x)=x mf w(x)f (x)dgx = Yi—o my f(x)
we get,

_3(b-a) __9(b-a) __9(b-a) __3(b-a)
0= a1 T 2wa "2 T 2pmq B T 2iaa)

For a method of order m
Error= R, = 2,

[m+1;q]! q
where a< &<b

Error terms in Trapezoidal Rule, Simpson’s 1/3 Rule, Simpson’s 3/8Rule
h3 ch* 3n5
Etrp = _EDgf(E)rEsmp 1/3 = _ZDgf(E):Esmp 3/8 = _EDgf(E)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

37)

(38)
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Weights for Newton’s Cotes Integration methods when q tends to one.

n Mo my m; ms
0 1/2 1/2

1 1/3 4/3 1/3

2 3/8 9/8 9/8 3/8

2.8 g-analogue of Lobatto Integration
f_llf(x)dqx =2(1 - @) X7=0q" f(@") = mof (=1) + muf (n) + ZRZT muef (i) (39)
Forn=2, [, f()dgx = 7 [f (=1) + f(1) + 4/ ()] (40)
2.9 g- analogue of Radau Integration

[} f@dax = 2(1 — @) $r0q” £(q7) = mof (—1) + ey myef (i) (42)
For n=2

16+V6 1-/6 16—V6 1+/6
f f(x)dq 3(1+q+q2)f(_ )+ 6(1iq+q2)f(T6) + 6(1iq+zz)f(T6) (42)

Predictor Correctors Method

2.10 g- analogue of Milne’s Method

Aqfo 32[2;q]-8[3:q] 3 ¢ ([2:4][3;918*~3+162[4;q][2;q]1+32[4:q1[3;4]
e = Yoo+ hl4fo + 16 g+ ZETTREAL, + 203 | [allziallzial J 43)
2.11 g-analogue of Moultons Method
4 Va0 1,1 3 3 4 2
v = o+ Wlfo + g+ G+ Vel + i ah (g G+ i )] “44)
where,Ag is K. Conrad [4] dif ference operator
= {(E "D (E-E -1} (45)

where E(f(x))=f(x+h)

I11. Conclusion
g-analogue of these methods provide an alternate method of solving classical problems where value of
g determines the accuracy of result. g-analogue of different transformations can be used in boundary value
problems of differential equations as well as in computer problems where parameters play important role .
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