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Abstract: In this paper, we will compare between Adomian decomposition method (ADM) and
Homotopy perturbation method (HPM) for obtaining the numerical solutions of higher-order linear
fractional integro-differential equations with boundary conditions. Numerical examples are presented to
illustrate the efficiency and accuracy of the proposed methods.
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I.  Introduction

Fractional differential equations have attracted much attention which provides an efficient for the
description of many practical dynamical phenomena arising in engineering and scientific disciplines such as,
physics, biology, chemistry, economy, electrochemistry, electromagnetic, control theory, viscoelasticity, see [1-
6]. Many mathematical formulations of physical phenomena lead to integro-differential equations such
as, fluid dynamics, continuum and statistical mechanics, see [7- 11].
In this paper, we considered the linear boundary value problems for higher-order fractional integro-differential
equations with a Caputo fractional derivative of the type:

Dy(x)=f (x)+yy(x)+ﬂjoxk(x, t)y(t)dt, 0<x<b, m-l<a<m meZ", (1)
subject to the following boundary conditions:

y(0)=r,  y'(0)=n, )
yb)=4. ¥ (b)=5. ®)

where D”is a caputo fractional derivative, y,, 7, £, 5. Aand y are real constants (i =2k, keZ", 1<k<

m/2), f(x) and k(x, t)are given and can be approximated by Taylor polynomials. The existence and

stability of solutions for fractional integro-differential equations [12- 14]. He [15- 19] was the first to propose
the Adomian decomposition method (ADM) and homotopy perturbation method (HPM) for finding the
solutions of non-linear problems. Most fractional integro-differential equations do not have exact solutions, so
must we use the approximate techniques. There are many methods for seeking approximate solutions such as
variational iteration method, homotopy perturbation method, homotopy analysis method, the fractional
differential transform method and Adomian decomposition method, see[20- 23].The outline of this paper is
as follows: In section 2,we present some preliminaries. Section 3, contains the application of the Adomian
decomposition method. Section 4, contains the application of the homotopy perturbation method. Finally,
Section 5, devoted to illustrate some numerical examples on mentioned methods.

I1.  Preliminaries
Definition 2.1. A real function f(x), x>0, is said to be in the space C

p>a,suchthat f(x)=x"f (x),where f,(x)eC[0,).

.+ a €R,if there exists a real number
Definition 2.2. A real function f (x), x>0, is said to be in the space C{, k e N, if f* C,.

Definition 2.3. 1” denotes the fractional integral operator of order o in the sense of Riemann-Liouville, defined
by:
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1)Ix( f(t? dt, a>0,

1 £ (x) = I(a x—t) (4)
f (X), a=0
Definition 2.4. Let f eC"}, me N. Then the Caputo fractional derivative of f (x), defined by:
« Ot
T ml_ JO Eilﬂdt 0<m-l<a<m,
Daf(x): ( 0() (X_t) (5)
d™f(x)
3 a=Me N
dx™
Now, we introduce some basic properties of fractional operator are listed below [1]:
For f eCp, u=>-1 y>-1 o, f20:
DI17 £ (x) =177 £ (x) = 1717 (x).
O et I
F(a+7/+l)
Eew (6)
@D [ f(x)]: f(x).
m-1
@1I°[D*f(x)]=1 ka 2 0<m-l<a<meN.
=0

I1l.  Adomian decomposition method
Consider the equation (1) with boundary conditions (2), (3). Applying the integral operator I to both
sides of the equation (1), we get:

y(x):ioijTZ+I”[f( Fy(0] 1 2Kk Y (O] )

according to the Adomian decomposition method [15, 16], we put the solution y(x) be decomposed by infinite
series of components as follows:

(=23, (x) ®
Substituti_on the dec_omposition (8) into both sides of (7), we get:
iyn(x)ziz;/jX_—J+I“[f(x)+7/iyn(x)}+l"[ﬂf (x 1) Zyn(t)dt} ©)
From equatlon (9) the iterations are determined as follows:

Yo (x)= 27,.—_+'“[f )] (10)
yn+1 ;/I“[yn }+I“[/1j X, t yn :| n=0. (11)

Where y, = y’(O), V3= y”’(O), --and ¥ = y(‘) (0) are to be determined. The decomposition series solutions

are generally converging very rapidly [24-29], we approximate the series solution of ADM by the following
N —terms truncated series:

Dy, (X) = Yo (X)+ Y1 (X)+ Y, (X)++--+ Yy (). (12)
Substitution (3) in (12), we get the following system of equations:
yo(b)+ yl(b)+ yz(b)+"'+ yN—l(b):ﬂO'

Yo (b)+yi(b)+y; (b)+-++ ¥\ (D)= 5, 13)

U, (0)+y, (0)+ ¥, (b)++--+ ¥, (0) = .
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From the system of equations (13), we can find the unknowns i, 73, ..., ;- Substitution the constant
values of 4, 73, ...y J; inequation (12), we get the approximate solution of the problem (1) - (3).
IV. Homotopy perturbation method

Consider the equation (1) with boundary value conditions (2), (3). According to HPM [17 - 19], we
construct the following homotopy:

(1-P)D* y(x) + P(D“ y(x)—f(x)—ry(x J t)dt) (14)
or

D” y(x)=P(f(x)+yy(x)+ﬂj:k(x, t)y(t)dt), (15)
where P <[0,1] is an embedding parameter. If P =0, then equation (15) becomes a linear equation,

D“y(x) =0, (16)

and when P =1, then the equation (15) becomes the original equation (1). The solution of equation (1) can be
written as a power series in P as follows:

Y (X) = Yo (X)+ Py, (X)+ P2y, (X)+ PPy, (X) 4+ 17
Put P =1 in equation (17), so the approximate solution of equation (1) is:
Y(X)= Yo () Y2 (x)+ Y5 (3) + Y5 () -+ (8

The convergence of the series (18) is proven in [30]. Substituting (17) in (15), then equating the terms with
identical power of P , we obtain the series of linear equations:

P% :D”y,(x)=0, (19)
PLD y, () = F(X)+ Yo (X)+ 4], k(% 1)y (t)t,
P21 y,(0) = 7y, (X)+ A k(x )y, (1, (20)

P*:D” y;(X) =Y, (x) +ﬂ,j (x, t)y, (t)dt,

From equatlon (19) the initial approximation can be chosen as follows:

Yo (X)= 271 —, (=2k,keZ+,l£k<m/2) (21)

where 7, =y (O) 7, =y"(0), - and y, =y (0) are to be determined by applying boundary conditions (3).

Equation (19) and system of equations (20) can be solved by applying the integral operator |, and then by
using simple computation, we approximate the series solution of HPM by the following N —terms truncated

D, (>.<):y0(x)+ Y1 (X)+ Y, (X) 4+ Yy (X). (22)

Substitution (3) in (22), we get the following system of equations:
Yo (b)+ Y (D)+y, (b)++yy,(b)= A5
Yo (B)+ Y (b)+y; (b) +++yi 1 (b) = 5, )

Vo () ¥, (0) 4y, ()44 ¥, (b) = .
From the system of equations (23), we can find the unknowns 73, 73, ..., ¥;- Substitution the constant

values of 71, /3: ..., 75 inequation (22), we get the approximate solution of the problem (1)-(3).
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V. Numerical examples
In this section we will apply ADM and HPM for higher-order fractional integro-differential
equations with known exact solutions at « =4, « =6. All results are obtained by using Maple 16:

Examplel. Consider the following linear fourth-order fractional integro-differential equation:

D*y(x)=1-(1+x)e™ —joxe"y(t)dt, 0<x<l 3<a<4, (24)
subject to the following boundary conditions:

y(0)=0, y"(0)=0 (25)
y(1)=1, y"(1)=0. (26)

For a =4, the exact solution of the above problem (24) - (26) is y(x) =X

According to ADM, the recursive Adomian decomposition algorithm is:

0 (0=3 755171 (9], @

Yo (X) = 17 [_ [lety, (t)dt:l. (28)
Where A=y’(0), B=y"(0)is to be determined. To avoid difficult fractional integration, we can take the

truncated Taylor expansions for the exponential term: e.g. €™ =1+ x+ X2/2!i x3/3!. Thus, by solving (27), (28),
we can form the N —terms approximation, N =2:
BX3 Xa+2 2Xa+3 4Xa+4

yO(X):AX+T+r(a+3)_r(a+4)+r(a+5)’

D, (X) =Y, (x)+1° [—_[Oxe’t Yo (t)dt:|. (29)
Where A, B can be determined by using boundary condition (26) in @, (x) (see Table 1).

Tablel. Values of A and B for different values of « using (29).

a=3.25 a =350 a=3.75 a=4
A 1.001289323 1.000824834 1.000521904 1.000326805
B —0.008770162045  —0.005565630077 —0.003495472122 —0.002173843410

We compute the absolute error functions E, (X)=|x—®, 55|, E, (X) =[x—®, 55| aNd E;(X)=|x=D, 55]-
Where x is the exact solution of (24)-(26) and @, 5,5, @, 55 and @, ,,; are approximate solutions of (24) -
(26) by using (29) at ¢ =3.25, o =3.50 and o =3.75 respectively.

According to HPM, we construct the following homotopy:

D*y(x)= P(l—xe’X —e —_[Oxe’ty(t)dt). (30)
Substituting (17) in (30), we obtain the following series of linear equations with identical power of P :
P° :D” y,(x) =0, (31)

P :D*y,(x)=1-xe ¥ —e* —one“ yo (t)dt,

P?:D"y,(x) = —J'()Xe“y1 (t)dt, (32)

Applying the operator 1* to the above series of linear equations and using the initial condition (25), we get:
Yo(x)=0, (33)
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BX3 a =X —X X ot
yl(x)=Ax+T+l [1—xe -e —_[Oe yo(t)dt},

y,(0)=1¢ [- [Tety: (t)dt], (34)

Where A=y’(0), B=y"(0) is to be determined. To avoid difficult fractional integration, we can take the
truncated Taylor expansions for the exponential term in the system (34): e.g. e =1+ x+x?/21+x%/31. Thus,
by solving (33), (34), we obtain vy,, Y,, ... .

BXS Xa+2 2Xa+3 4Xa+4

= AX +— - , 35
() = poce 6 +F(a+3) F(a+4)+F(a+5) =
Now, we can form the N —terms approximation, N =2:
3 a+2 a+3 a+4
®,(x)= Ax+—BX +—= __2X + ax (36)

6 T(a+3) T(a+4) T(a+5)
Where A, B can be determined by using boundary condition (26) in @, (x) (see Table 2).

Table2. Values of A, B for different values of « using (36).

a=325 a =3.50 a=3.75 a=4
A 1.010100244 1.007586266 1.005567011 1.004001323
B —0.08553725904 —0.06165650476  —0.04373516366 —0.03055555556

We compute the absolute error functions E, (X)=|x—®, 55|, Es(X)=|X—®, 55| aNd Eg (X) =[x =D, 575
Where x is the exact solution of (24) - (26) and @, ,,;, @, 55, and @, ,,. are approximate solutions of (24) -
(26) by using (36) at ¢ =1.25 « =150 and «a=1.75 respectively. In Fig.1 we compare the absolute error
functions.

Example2. Consider the following linear sixth-order fractional integro-differential equation:

D“y(x)=-1+(2-x)e*+ [ ty(t)dt, 0<x<1, 5<a <6, (37)
subject to the following boundary conditions:

y(0)=1  y'(0)=1  y¥(0)=1 (38)
y(1)=e, y'(1)=e, y9 (@) =e (39)

For a =6, the exact solution of the above problem (37) - (39) is y(x)=¢".

According to ADM, the recursive Adomian decomposition algorithm is:

(0= 37, 517 (), @

Yo (X)=1° onty(t)dt} (41)
Where A=y’(0), B=y"(0) andC = y® (0) are to be determined. To avoid difficult fractional integration,

we can take the truncated Taylor expansions for the exponential term: e.g. e =1+ x+x?/21+x%/31. Thus, by
solving (40), (41), we can form the N —terms approximation, N =2
3 4 5 a a+l a+3 a+4
yo(x):1+Ax+B—X+X—+CL+ X X S _ & ,
6 24 120 T'(a+l) TI'(a+2) T(a+4) T'(a+b)
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CDZ(X)=y0(x)+I“UOXty0 (t)dt] (42)
Where A, B and C can be determined by using boundary condition (39) in®, (x) (see Table 3).

Table3. Values of A, B and C for different values of o using (42).

a=525 a =550 a=575 a=6
A 0.9987943931 0.9985646077 0.9990890315 1.000033984
B 1.013697556 1.015730408 1.009763351 0.9996955212
C 0.2955891970 0.5610041471 0.7981238648 1.002067372

We compute the absolute error functions E, (x)= |eX -D, 525|, B (X) =

e —®, 55| and Eq(x) =le"~ @, ore]-

Where e* is the exact solution of (37) - (39) and @, ;,;, ®, 55 and @, ., are approximate solutions of (37) -
(39) by using (42) at ¢ =3.25, « =3.50 and « =3.75 respectively.

According to HPM, we construct the following homotopy:

D“y(x):P(—l+(2—x)ex+ [iye). (43)
Substituting (17) in (43), we obtain the following series of linear equations with identical power of P :

P° :D“y,(x) =0, (44)
PL:D” y, (X) = —1+(2-x)e* +joxty0 (t)dt,

P2:D"y,(x) = joxtyl (t)dt, (45)

Applying the operator 1” to the above series of linear equations and using the initial condition (38), we get:

Yo (x)=1 (46)
B x* CxX° , . (X

v, (x) =1+ AX+T+§+E+ I [—1+(2—x)e +j0 ty, (t)dt},

y,(0) = 1° U:tyl (t)dt] (47)

Where A=y'(0), B=y"(0)and C = y® (0) are to be determined. To avoid difficult fractional integration, we
can take the truncated Taylor expansions for the exponential term in the system (47): e.g.
e =1+ x+x2/21+x%/31. Thus, by solving (46), (47), we obtain y,, Y,, ...
2 3 4 5 a a+l a+2 a+3 a+4
yl(x):Ax+X—+B—X+X—+C—X+ X 4 * T X _ , (48)
2 6 24 120 F(a+l) F(a+2) F(a+3) F(a+4) F(a+5)

Now, we can form the N —terms approximation, N =2
2 3 4 5 a a+l a+2 a+3 a+4
CDZ(X)=1+AX+X—+B—X+X—+CL+ X X + = X _ & :
2 6 24 120 T (a+l) T(a+2) I'(a+3) T(a+4) TI'(a+b)

Where A, Band C can be determined by using boundary condition (39) in @, (x) (see Table 4).

(49)
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Table4. Values of A, B and C for different values of « using (49).

a =525 a =5.50 o =575
A 0.9999697551 0.9993589934 0.9996189375 1.000383104
B 1.002993635 1.008525151 1.004974548 0.9965509942
Cc 0.3727393281 0.6121554492 0.8316703803 1.023837383

We compute the absolute error functions E,,(x)= |eX -0, 5.25|, Eu(x)= |eX -0, 5.50| and E, (x) =

X
€ _q)z, 5.75|-

Where ¢* is the exact solution of (37) - (39) and @, 5,5, ®, 55, and @, 5 are approximate solutions of (37) -
(49) by using (49) at & =5.25, « =5.50 and « =5.75 respectively.

In Fig.2 we compare the absolute error

functions.
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*E1 . 0.0025 = ¢
s E4 * . 1] o E5
0.003 + .
0.002 -
£0.002 - . ¢ £0.0015 - .
- w
0.001 - .
0.001 4 . .
o + 0.0005 - ..
0 o ¢ * * o . 0 o ® o ¢ I * o o .
0 0.5 1 0 0.5 1
X X
(la) a=3.25 (1b) 0=3.50
0.0025 -
¢ E3
0.002 | eE6 .
¢ *
50.0015 - .
= .
W 0.001 - ¢
*
0.0005 4 ¢
0 o ¢ * ¢ T * o o * .
0 0.5 1
X
(1c) a=3.75
Fig.1. Comparison of absolute error functions E; (x) — E¢ (x) obtained by ADM and HPM for different o.
0.0004 - 0.0005 ~
*E7 MRS +E8 .
0.0003 - ¢ E10 o 0.0004 -| ®E11
S +0.0003 -
£0.0002 - ¢ . S . .
- LW0.0002 - .
0.0001 s0001 - . .
M *
0L o o o o @ * * ¢, 0 .
0 0.5 1 0 0.5 1
X X

www.iosrjournals.org

44 | Page



Comparison of Adomian decomposition and Homotopy perturbation methods for higher-order linear

0.0003 - R
000025 | o M
' e E12 * .
0.0002 -
S * .
£0.00015 -
(i . ¢
0.0001 | L LA
0.00005 - ¢
*
0 . +
0 0.5 1
X
(2¢) 0=5.75

Fig.2. Comparison of absolute error functins E; (X) — E;, (X) obtained by ADM and HPM for different a.

VI.  Conclusion
In this paper, this study showed that the numerical results of most linear fractional integro-differential
equations (1) — (3) as follows:
Case (1): If =0 and A is a negative real number, we find ADM is better than HPM (see Fig. 1).

Case (I1): If =0 and A is a positive real number, we find HPM is better than ADM (see Fig. 2).

Also it is shown that the accuracy can be improved by more N —terms of approximated solutions and by taking
more terms in the Taylor expansion of the exponential term.

References
[1] A. A Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-
Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
[2] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific, 2009.
[3] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience
Publication, JohnWiley & Sons, New York, NY, USA, 1993.

[4] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.
[5] K. Diethelm and A.D. Freed, “On the solution of nonlinear fractional order differential equations used in the modeling of

viscoelasticity,” in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and
Molecular Properties, F. Keil, W. Mackens, H. Voss, and J. Werther, Eds., pp. 217-224, Springer, Heidelberg, Germany, 1999.

[6] R. Metzler, W. Schick, H.-G. Kilian, and T. F. Nonnenmacher, “Relaxation in filled polymers: a fractional calculus approach,”
Journal of Chemical Physics, vol. 103, no. 16, pp. 7180-7186, 1995.

[7] L. Gaul, P. Klein, and S. Kemple, “Damping description involving fractional operators,” Mechanical Systems and Signal
Processing, vol. 5, no. 2, pp. 81-88, 1991.
[8] W. G. Glockle and T. F. Nonnenmacher, “A fractional calculus approach of self-similar protein dynamics,” Biophysical Journal,

vol. 68, pp. 46-53, 1995.

[9] R. Hilfert, Applications of Fractional Calculus in Physics,World Scientific, River Edge, NJ, USA, 2000.

[10] R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional
differential equations and inclusions,” Acta ApplicandaeMathematicae, vol. 109, no. 3, pp. 973-1033, 2010.

[11]  Z. Bai and H. L" u, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of
Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495-505, 2005.

[12]  Zhenyu Guo, Min Liu, Donglei Wang, Solutions of Nonlinear Fractional Integro-differential Equations with Boundary Conditions,
Bulletin of TICMI. 16 (2) (2012), 58-65.

[13]  Bashir Ahmad, Juan J. Nieto, Existence Results for Nonlinear Boundary Value problems of Fractional Integro-differential
Equations with Integral Boundary Conditions, Hindawi Publishing Corporation, Boundary Value problems. (2009) 1-11.

[14]  Shaher Momani, Samir Hadid, LYAPUNOV Stability Solutions of Fractional Integro-differential Equations, Hindawi Publishing
Corporation, IIMMS. 47 (2004) 2503-2507.

[15]  G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988) 501-544.

[16]  G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994.

[17]  J.H. He, Homotopy perturbation method: a new nonlinear analytic technique, Applied Mathematics and Computation 135 (2003)
73-79.

[18]  J.H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (1999) 257-262.

[19]  J.H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, International Journal of
Nonlinear Mechanics 35 (1) (2000) 37-43.

[20]  Yasir Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential
equations, Computers and Mathematics with Applications, 61 (2011) 2330-2341.

[21]  Xindong Zhang, Bo Tang, Yinnian He, Homotopy analysis method for higher-order fractional integro-differential equations,
Computers and Mathematics with Applications, 62 (2011) 3194-3203.

[22]  Aytac Arikoglu, Ibrahim Ozkol, Solution of fractional integro-differential equations by using fractional differential transform
method, Chaos, Solitons and Fractals, 40 (2009) 521-529.

www.iosrjournals.org 45 | Page



Comparison of Adomian decomposition and Homotopy perturbation methods for higher-order linear

[23]
[24]
[25]
[26]

[27]
[28]

[29]

[30]

Shaher Momani, Muhammad Aslam Noor, Numerical methods for fourth-order fractional integro-differential equations, Applied
Mathematics and Computation, 182 (2006) 754—-760.

V. Seng, K. Abbaoui, Y. Cherruault, Adomian’s polynomials for nonlinear operators, Math. Comput. Modell. 24 (1) (1996) 59-65.
Y. Cherruault, Convergence of Adomian’s method, Kybernetes 18 (1989) 31-38.

A. Re'paci, Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method, Appl. Mth. Lett. 3 (3) (1990) 35—
39.

Y. Cherruault, G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Modell. 18 (1993) 103-106.

K. Abbaoui, Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Math. Appl. 29 (7) (1996)
103-108.

K. Abbaoui, Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Comput. Math. Appl. 28 (5)
(1996) 103-109.

J.H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.

www.iosrjournals.org 46 | Page



