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I.  Preliminaries  
Let X be a non empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The null fuzzy set 

0 is the mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from X 

on to I which takes the values 1 only. The union (resp. intersection) of a family {Aα: Λ}of fuzzy sets of X is 

defined by  to be the mapping sup Aα (resp. inf Aα) . A fuzzy set A of X is contained in a fuzzy set B of X if 

A(x) ≤ B(x) for each xX. A fuzzy point xβ in X is a fuzzy set defined by xβ (y)=β for y=x and x(y) =0 for y  x, 

β[0,1] and y  X .A fuzzy point xβ is said to be quasi-coincident with the fuzzy set A denoted by xβqA if and 

only if β + A(x) > 1. A fuzzy set A is quasi coincident with a fuzzy set B denoted by AqB if and only if there 

exists a point xX such that A(x) + B(x) > 1 .A ≤ B if and only if (AqB
c
).A family  of fuzzy sets of X is called 

a fuzzy topology [2] on X if 0,1 belongs to  and  is super closed with respect to arbitrary union and finite 

intersection .The members of  are called  fuzzy super open sets and their complement are fuzzy super closed 

sets. For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection  of all the fuzzy super 

closed super sets of A  and the interior of A (denoted by int(A) )is the union of all fuzzy super open subsets of 

A. 

Defination1.1 [5,10,11,12]: Let  (X,)  fuzzy topological space and AX then 

1. Fuzzy Super closure  scl(A)={xX:cl(U)A≠} 

2. Fuzzy Super interior  sint(A) ={xX:cl(U)≤A≠} 

Definition 1.2[5, 10,11,12]: A fuzzy set A of a fuzzy topological space (X,) is called: 

(a) Fuzzy super closed if scl(A )  A. 

(b) Fuzzy super open if 1-A is  fuzzy super closed sint(A)=A 

Remark 1.1[5, 10,11,12]: Every fuzzy closed set is fuzzy super closed but the converses may not be true. 

Remark 1.2[5, 10,11,12]: Let A and B are two fuzzy super closed sets in a fuzzy topological space (X,), then 

A  B is fuzzy super closed. 

Remark 1.3[5]: The intersection of two fuzzy super closed sets in a fuzzy topological space (X,) may not be 

fuzzy super closed.  

Definition 1.3: A fuzzy set A of an  fuzzy topological space (X, ) is said to be :-   

(a)  fuzzy regular super open if  A = int(cl(A)) [7]. 

(b)  fuzzy g-super closed if cl(A)O whenever AO and O is an  fuzzy super open set.[14] 

(c)  fuzzy g-super open if A
c
 is  fuzzy g-closed.[14] 

(d)  fuzzy rg-super closed if cl(A) O whenever AO and O is an  fuzzy regular super open set.[16] 

(e)  fuzzy rg-super open if A
c
 is  fuzzy rg-closed.[16] 

Remark 1.3: Every fuzzy super closed set is fuzzy g-super closed and every fuzzy g-super closed set is fuzzy 

rg-super closed but the converse may not be true.[14,16] 

Definition 1.4: A mapping f : (X,)(Y,) is said to be : 

1.  Fuzzy g-super continuous if the pre image of every fuzzy super closed set of Y is fuzzy g-super closed in 

X.[15]. 

2.  Fuzzy rg-super continuous if the pre image of every  fuzzy super closed set of Y is  fuzzy rg-super closed 

in X. [17] 

Remark 1.4: Every fuzzy super continuous mapping is fuzzy g-super continuous and every fuzzy g-super 

continuous mapping is fuzzy rg-super continuous but the converse may not be true.[17] 

Definition 1.5: A collection {G:} of fuzzy rg-super open sets in a fuzzy topological space (X,) is called 

a fuzzy rg-super open cover of an  fuzzy set A of X if A {G:}.[16] 

Definition 1.6: A fuzzy topological space (X,) is said to be fuzzy rg- super compact if every fuzzy rg-super 

open cover of X has a finite subcover.[16] 
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Definition 1.7: An  fuzzy set A of an  fuzzy topological space (X,) is said to be  fuzzy rg- super compact 

relative to X if every collection  {G:}  of    fuzzy  rg-super open  subsets  of  X  such  that A  

{G:}there exists a finite subset 0 such that A  {Gj: j0}.[16] 

Definition 1.8: A fuzzy topological space X is  fuzzy rg-connected if there is no proper  fuzzy set of X which is 

both  fuzzy rg-super open and  fuzzy rg-closed.[17] 

 

II. Fuzzy rg -super irresolute Mappings 
Definition 2.1: A mapping f from a fuzzy topological space (X,) to another fuzzy topological space (Y,) is 

said to be fuzzy rg -super irresolute if the pre image of every  fuzzy rg-super closed set of Y is  fuzzy rg-super 

closed in X. 

Theorem 2.1: A mapping f : (X,)(Y,) is  fuzzy rg -super irresolute if and only if the pre image of every  

fuzzy rg-super open set in Y is  fuzzy rg-super open in X. 

Proof: It is obvious because f 
-1

(U
c
) = (f 

-1
(U))

c
, for every  fuzzy set U of Y. 

Remark 2.1: Every fuzzy g-super closed set is fuzzy rg-super closed it is clear that every fuzzy rg -super 

irresolute mapping is fuzzy rg-super continuous but the converse may not be true. 

Definition 2.2: A mapping f : (X,)(Y,) is said to be  fuzzy regular super open if the image  of  every   

fuzzy regular super open set of X is  fuzzy regular super open set in Y. 

Theorem 2.2: Let f :(X,)(Y,) is bijective fuzzy regular super open and  fuzzy rg-super continuous then f is  

fuzzy rg- super irresolute. 

Proof: Let A be a fuzzy rg-super closed set in Y and let f 
-1

(A)  G where G is fuzzy regular super open set in 

X. Then A  f(G). Since f is fuzzy regular super open and A is fuzzy rg-super closed in Y, cl(A)  f(G) and f 
-

1
(cl(A))  G. Since f is fuzzy rg-super continuous and cl(A) is  fuzzy super closed in Y, cl(f 

-1
(cl(A)))  G. And 

so cl(f 
-1

(A))  G. Therefore f 
-1

(A) is fuzzy rg-super closed in X. Hence f is fuzzy rg-irresolute. 

Theorem 2.3: Let f : (X,)(Y,) and g: (Y,)(Z,) be two  fuzzy  rg -super irresolute mappings, then gof : 

(X,)(Z, ) is  fuzzy rg- super irresolute. 

Proof : Obvious. 

Theorem 2.4: Let f : (X,)(Y,) is  fuzzy  rg -super irresolute mapping,  and  if B is  fuzzy rg- super compact 

relative  to X, then the image f(B) is  fuzzy rg- super compact relative to Y. 

Proof : Let {Ai: i}be any collection of  fuzzy rg-super open set of Y such that f(B)  {Ai: i}. Then B  

{f 
-1

(Ai): i}. By using the assumption, there exists a finite subset 0 of  such that B  {f 
-1

(Ai): i0}. 

Therefore, f(B)  {Ai: i0}. Which shows that f(B) is  fuzzy rg- super compact relative to Y. 

Theorem 2.5: A fuzzy rg -super irresolute image of a fuzzy rg- super compact space is fuzzy rg-compact. 

Proof: Obvious. 

Theorem 2.6: If the product space (XxY, x) of two non- empty fuzzy topological spaces (X,) and (Y,) is 

fuzzy rg- super compact, then each factor space is fuzzy rg- super compact. 

Proof: Obvious. 

Theorem: 2.7:: Let f : (X,)(Y,) is a fuzzy rg -super irresolute surjection and (X,) is  fuzzy rg- super 

connected, then (Y,) is  fuzzy rg- super connected. 

 Proof : Suppose Y is not  fuzzy rg- connected then there exists a proper  fuzzy set G of Y which is both  fuzzy 

rg-super open and  fuzzy rg-closed, therefore f 
-1

(G) is a proper  fuzzy set of X, which is both  fuzzy rg-super 

open and  fuzzy rg-closed, because f is  fuzzy rg-super continuous surjection. Therefore X is not fuzzy rg-

connected, which is a contradiction. Hence Y is fuzzy rg- super connected. 
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