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Abstract:  In this paper we study an epidemic model with immigration and non-monotone incidence rate under 

limited resources for treatment is proposed to understand the effect of the capacity for treatment. It is assumed 

that the treatment rate is proportional to the number of patients as long as this number is below a certain 

capacity and it becomes constant when that number of patients exceeds this capacity. Global analysis is used to 

study the stability of the disease free equilibrium and endemic equilibrium. It is shown that this kind of treatment 

rate leads to the existence of multiple endemic equilibria where the basic reproduction number plays a big role 

in determining this stability. 
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I.        Introduction 
             Mathematical models have become important tools in analysing the spread and control of infectious 

diseases. The incidence in an epidemiological model is the rate at which susceptible become infectious. The 

form of the incidence rate that is used in the classical Kermack Mckendrick model (1927)  is the simple mass 

action λSI where S and I denote the number of susceptible and infectious, respectively, λ is called the infection 

coefficient. Many researchers (see Liu et al., 1986, Liu et al., 1987, Hethcote and Levin 1988) have proposed 

transmission laws in which the nonlinearities are more than quadratic. A more general incidence rate 

λI
p
S=(1+λI

q
) were proposed by many researchers and authors (see Hethcote and Ven den Driessche 1991). 

Treatment plays an important role to control or decrease the spread of diseases such as flue, tuberculosis, and 

measles. In classical epidemic models, the treatment rate is assumed to be proportional to the number of the 

infectious, which is almost impossible in real perspective because in that case the resources for treatment should 

be quite large. In fact, every country or society should have a suitable capacity for treatment. If it is too large, 

the country or society pays for unnecessary cost. If it is too small, the country or society has the risk of the 

outbreak of a disease. The recent epidemic outbreak of severe acute respiratory syndrome (SARS) had such 

psychological effects on the general public, aggressive measures and policies, such as border screening, mask 

wearing, quarantine, isolation, etc. have been proved to be very effective (Diekmann O. et al., 2000, Gumel et 

al., 2004) in reducing the infective rate at the late stage of the SARS outbreak, even when the number of 

infective individuals were getting relatively larger. To model this phenomenon, we propose an incidence rate 

    g(I)S = 
2αI1

IS




 

where λI measures the infection force of the disease and 1/(1+I
2
) describes the psychological or inhibitory 

effect from the behavioral change of the susceptible individuals when the number of infective individuals is very 

large. This is important because the number of effective contacts between infective individuals and susceptible 

individuals decreases at high infective levels due to the quarantine of infective individuals or due to the 

protection measures by the susceptible individuals. Wang (2006) proposed a treatment function: 

                                                               T(I) = rI;  if 0 ≤ I ≤I0 

                                                                      = K1;  if I > I0 

where K1=rI0. This type of treatment function is more realistic because in every hospital, the number of beds is 

limited and also they have a certain capacity of medicines. In our proposed model we have considered an 

epidemic model with non-monotonic incidence rate under the treatment. In our work we take the treatment 

function T(I), defined  

                                                              T(I) = rI;  if 0 ≤ I ≤ I0 

                                                                     = K1;  if I > I0  

This means that the treatment rate is proportional to the infective when the number of infective is less or equal 

to some fixed value I0 and the treatment is constant when the number of infective crosses the fixed value I0. In 

practical view, the above form of treatment function is justified where patients have to be hospitalized and the 

number of beds is limited or the medicines are not sufficient. Xiao and Ruan, 2007 proposed an epidemic model 

with non-monotonic incidence rate is λIS/(1+αI
2
).  
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              This paper investigates the global analysis of SIR epidemic model with immigration and non-monotone 

incidence rate under treatment. To construct this model, we will divide the total population into three 

epidemiological classes which are susceptible (S), infectious (I) and recovered (R). 

 

II.      The Mathematical Model 
  The proposed model is 

  





 R
αI1

SI
dSa

dt

dS
2

                                                  (1) 

  

m)I(d
αI1

IS

dt

dI
2







-T(I)                                                   (2) 

 )R(dmI
dt

dR
 +T(I)                                                                (3) 

where S(t), I(t) and R(t) denote the numbers of susceptible, infective, and recovered individuals at time t, 

respectively. a is the recruitment rate of the population, d is the natural death rate of the population, λ is the 

proportionality constant, m is the natural recovery rate of the infective individuals, β is the rate at which 

recovered individuals lose immunity and return to the susceptible class, µ is the increase of susceptible at 

constant rate,  is the parameter measures the psychological or inhibitory effect. 

Case (i) : SIR model with 0 ≤ I ≤ I0 

In this case the system (1)-(3) reduces to 







 R
αI1

SI
dSa

dt

dS
2

                                                                                                                   (4)           

m)I(d
αI1

IS

dt

dI
2







 -rI                                                                                                                              (5) 

)R(dmI
dt

dR
 +rI                                                                                                         (6)                                                                             

The system of equations (4)-(6) always has the disease free equilibrium E0(a+µ/d,0,0) for any set of parameter 

values. The endemic equilibrium is the solution of             

0   R
αI1

SI
dSa

2



 


                                       

0  r)Im(d
αI1

IS
2





                                             

0)R(dr)I(m                                                 

From the third equation, we get  

 R = I  
d

rm














  and   

From the second equation, we get  

 S =  


)αIr)(1m(d 2
.  

Now substituting R and S in the first equation, we get 

  0 )(ar)m(d d I 
d

r)(m 
rmdI r)]m(d d [α 2 




















 




   

   
r)m(dd4α

)d(d

 )(a
1r)m(dαd4

d

r)(m 
rmd

r)md(d2

d

r)m(
rmd

 I
222

22

2

2
















































rm















 

We define the basic reproduction number as follows 

R0 = 
)d(d

 )(a

rm 

 
                                                                 (7) 
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From equation (7), we see that 

(i)   If R0  1, then there is no positive equilibrium; 

(ii)  If R0>1, then there is a unique positive equilibrium E
*
 = (S

*
,I

*
,R

*
),  called the endemic equilibrium and is   

       given by 

S
*
 = 



 )*Ir)(1m(d
 

2
                                                                               (8) 

I
*
 =  

r)m(d αd 2

Δ
d

r)m(
rmd






















                                                                                                       (9) 

R
*
 = 

*I
d

r)(m
 




                                                                 (10) 

where   = ]R  [1r)m(dαd4
d

r)m(
rmd 0

22

2

2 
















                                  

In the next section, we shall study the property of these equilibria and perform a global qualitative analysis of 

model (4)-(6). 

 

III.     Mathematical Analysis 
To study the dynamics of model (4)-(6), we first present a lemma. 

Lemma : 3.1  

           The plane S + I + R = ) (a  /d is an invariant manifold of system (4)-(6), which is attracting in the 

first octant. 

Proof :  

Summing up the three equations (4)-(6) and denoting N(t) = S(t) + I(t) + R(t), we have 

dN

dt
=  a  – dN(t)                                                                             (11) 

    N(t) = 
d

e ))dN(t(a
  )N(t

)td(t

0
0

0





 

where N(t0) = daeA
dt

/0

1 


. It is clear that N(t) ) (a  /d, as t∞. So the limit set of system is on 

the plane S + I + R = a+µ/d. Thus the reduced system is 

R)Q(I,   )R(dr)Im(
dt

dR

R)P(I,    I r)m(dRI
d

  a

αI1

I

dt

dI
2






















                                                               (12)             

 We have the following result regarding the non-existence of periodic orbits in system (12), which 

implies the non-existence of periodic orbits of system (6) by Lemma. 

 

Theorem : 3.2 

        System (12) does not have nontrivial periodic orbits. 

Proof : 

        Consider the system (12) for I > 0 and R > 0. Take a Dulac function 

D(I,R) = 
I

αI1 2




 

We have 

0)R(d
I

αI1
I

r)m(d 2α
1

R

(DQ)

I

(DP) 2



















 

The conclusion follows. Now to test the local stability of the above system we rescale the system(12) by 

x = I
d 




,  y = R

d 




,  T= (d+β)t  
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Then we obtain  

 2

dx x
K x y ux                                                                                            (13)

dT 1 x

dy
wx y                                                                            

dT

v
   



                                            (14)

 where v = 
2

2)(d



 
,  K = 

)d(d

)  a (








,  u = 





d

d rm
,  w = 





d

rm
 . 

Here E0 (0, 0) is the disease free equilibrium and the unique positive equilibrium (x
*
, y

*
)        

of the system (13)-(14) is the endemic equilibrium E
*
 of the model (4)-(6). (x

*
, y

*
)          exists if u-K<0 and is 

given by 
**** ,0)()1(

2

wxyKuxwuvx  , where 

x
*
=

2uv

K)-4uv(uw)(1w)(1 2 
                                                                                                     (15) 

 

We first determine the stability and topological type of (0, 0). The Jacobian matrix of system (13) at (0, 0) is  

  M0 = 












1w

0K u
 

If K – u = 0, then there exists a small neighborhood N0 of (0, 0) such that the dynamics of system (13) is 

equivalent to 

ywx
dT

dy

)y)O((x,xyx
dT

dx 32





                                    

We know that (0, 0) is a saddle-node. Hence, we obtain the following result. 

 

Theorem : 3.3 

        The disease-free equilibrium (0, 0) of system (14) is 

    (i)   a stable hyperbolic node if  K-u < 0, 

   (ii)  a saddle-node if K-u = 0, 

 (iii) a hyperbolic saddle if  K-u > 0. 

Proof : 

         When  K-u > 0, we discuss the stability and topological type of the endemic equilibrium (x
*
, y

*
). The 

Jacobian matrix of (13) at (x
*
, y

*
) is 

       M1 = 

























1-w

)vx(1

x

)vx(1

12Kvx2vwx(vxx
22*

*

22*

*2*2**

 

We have that 

det (M1) = 
22*

2***

)vx(1

)w)vx(12Kvxw(1x




                                                                

The sign of det (M1) is determined by 

 P1 )w)vx(12Kvxw(1 
2**                                                                                                             (16) 

Note that  uv
2*x + (1+w) x

*
 + (u – K) = 0                                                                                                        (17)                         

We have uP1 = (2Kuv+ (1 + w)
2
) 














2

*

w)(12Kuv

K)w)(2u(1
x  

Now substituting x
*
=

2uv

w)(1 1
 where K)4uv(uw)(1 2

1  , into P1 and using a 

straightforward calculation, we have 
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      P1 = 







 ]w)(12Kuv[w)Δ(1

2u

Δ 2

12

1

v
 = 






















12

1 Δ
1

2Kuv
w1

2u

Δ w)(1

wv
. 

Since  
2

1

2

Δ
1

2Kuv
w1 












w
 = 0v4u

w)(1

Kv4u 2

2

222




, it follows that P1 > 0.  

Hence, det (M1) > 0 and (x
*
, y

*
) is a node or a focus or a center. Furthermore, we have the following result on 

the stability of (x
*
, y

*
). 

 

Theorem : 3.4 

             Suppose K-u < 0, then there is a unique endemic equilibrium (x
*
, y

*
) of model (14), which is a stable 

node. 

Proof : 

             We know that the stability of (x
*
, y

*
) is determined by trace(M1). We have 

trace(M1) = 
22*

*2*3*4*2

)vx(1

1xK)vx2(12w)vx(1xv




 

The sign of trace (M1) is determined by 

P2= 1x)vx2(12w)vx(1xv *2*3*4*2  K                                                                               (18) 

We claim that P2  0. To see this, note that uv
2*x +(1+w) x

*
+u–K= 0. Then we have  

  u
3
vP2 = (B1K + B2) x

*
 - (B3K + B4),where  

P3=B1K+B2  and P4=B3K+B4                                                                                          

i.e.,     P3=(1+w)[(1+w)
2
+u(1+w)(1+2w)+2uvK]+u

2
vK(1+2w)+2u

2
v(1+w)(K-u)                                              (19)                

and       P4=(K-u)[(1+w)
2
+u(1+w)(1+2w)]+uv[(K-u)

2
+2u(K-u)(1+K)+u

2
]                                                         (20)                     

 

Therefore P3 and P4 are positive for any set of parameters with K>u. When (x
*
, y

*
) exists, the condition for the 

local stability of  (x
*
,  y

*
) becomes x

*
< P4/P3. 

B1 = uv(2+3u+2w+4uw), 

B2 = (1+w)[(1+w)
2
+u(1+w)(1+2w)–2u

3
v], 

B3 = – (1+w)
2
–u(1+w)(1+2w)+2u

3
v, 

B4 = u[(1+w)
2
+u(1+w)(1+2w)–v(1+2u)K

2
]. 

When K – u < 0; we can see that B1K + B2 > 0. Let 

 = uv
2*x + (1+w) x

*
 + u – K.  

Similarly, we have 

(B1K + B2)
2 
 = u

3
vpP2 - P3, 

where p is a polynomial of x
*
 and 

P3 = u
3
v(1+K

2
v+2w+w

2
)[(K+2Ku–2u

2
)

2
v+(1+K–u+w)(1+u+w+2uw)].            

Assume that P2 = 0. Since  = 0, it follows that P3 = 0. However, when u – K < 0 we have P3> 0. Therefore, P2  

0 for any positive value of the parameters v, w and K, that is,  

trace (M1)  0. Thus, u – K < 0 implies that (x
*
, y

*
) does not change stability.  

Take u = 1, K = 2, v = 1, w = 1. Then x
*
 = –1 + 2 , y

*
 = –1 + 2 ,  

Trace (M1) = –1.4645 < 0. 

By the continuity of trace (M1) on the parameters, we know that trace (M1) < 0 for  

u – K < 0. This completes the proof.  

 

Theorem : 3.5  

    (i)   When the basic reproduction number R0 ≤ 1, there exist no positive equilibrium of    

           the system (14)-(15), and in that case the only disease free equilibrium (0, 0) is a                   

           stable node. 

    (ii)  When R0>1, there exists a unique positive equilibrium of the system (14)-(15), and    

            in that case (0, 0) is an unstable saddle point. Also the condition for which the    

            unique positive equilibrium will be locally stable if x
*
 < P4/P3. 
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Theorem : 3.6  

            If R0 < 1, then the disease free equilibrium E0 (a/d, 0, 0) of the system (12)-(13) is globally stable. But 

when R0 > 1, system (12)-(13) has unique positive equilibrium and further when x* < P4/P3 that unique positive 

equilibrium must be locally stable. Again since the system has no limit cycle in the positive quadrant, E*(x*, y*) 

must be globally stable under the condition R0 > 1 and x* < P4/P3. 

 

Theorem : 3.7   

   Let R0 be defined by (8). 

        (i)  If R0 < 1, then model (6) has a unique disease-free equilibrium  

              E0 = ( )  a (  /d, 0, 0), which is a global attractor in the first octant. 

       (ii)  If R0 = 1, then model (6) has a unique disease-free equilibrium                                

       E0 = ( )  a (  /d, 0, 0), which attracts all orbits in the interior of the first octant. 

      (iii)  If R0 > 1, then model (6) has two equilibria, a disease-free equilibrium  

       E0 =( )  a (  /d,0,0), and an endemic equilibrium E
*
 = (S

*
,I

*
,R

*
). The endemic     

       equilibrium E
*
 is a global attractor in the interior of the first octant. 

 

Case (ii) : SIR model with I > I0 

   In this case the model is  

                                                                                                                 (21)                         

                                                                                                       (22)                     

                                                                                                                             (23)                       

Since = is invariant manifold of the system (22)-(24),the model reduces to  

                                                                           (24) 

                                                                                                       (25)   

Substituting we get

 

                                                                                                  (26)                          

 

                                                                                                                                           (27)       

 

where  = , = , = = , = , = 

 

For the equilibrium, put 

 

(or)   

                                                                          (28)   

If , equation (28) has no positive solution. But if , then it has either two 

positive roots or no positive root. By the theory of equations 

21

ds IS
a ds R

dt I


 


    



12
( )

1

dI IS
d m I K

dt I




   



1( )
dR

mI d R K
dt

   

S I R 
a

d



12

[ )]

( )
1

a
I I R

dI d d m I K
dt I







 

   


1( )
dR

mI d R K
dt

   

, ( )
I R

x y andT d t
d d

 


 
   

 

12

1

( )
( )

1

dx x K x y
K x y u x c

dT v x

 
    



cyxw
dT

dy
 1

K
)(

)(









dd

a
1u





d

md
1v v

2

2

( )d 




c

2

1

)( 



d

K
1w

m

d 

2 2

1 1 1( ) (1 ) (1 ) 0x K x y u x v x c v x      

3 2

1 1 1(1 ) ( ) 0u vx w cv x c u K x c       

1u c K  1u c K 
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                                                                                                       (29) 

has all roots are real if the conditions  and , where 

  and  are satisfied. 

Comparing equation (28) and (29) we have 

p0 = u1v,   p1 = (1+w1+cv)/3,   p2 = (u1+c-K)/3  and  H<0
 

=  

When then and  

 

            

To fulfill the condition  we must have  

                                                             (30) 

To investigate the local stability of the positive equilibrium of the system (26) - (27), we consider the 

Jacobian matrix  

         

Now det(M2) = 

 
Solving this we get the sign of the det (M2) is governed by the factor 

                                   (31)                                                                                                             

We recall equation (28) and use it in (31). After some calculations we get, 

                                                                                                                                 (32) 

 

i.e., > 0 if   

Hence with the above condition, sufficient condition for p5 to be positive if 

                                                                                                                                                 (33) 

Trace (M2)=  

 

Solving this we get the sign of Trace (M2) is determined by the sign of  

=                   (34)
 

After some algebraic calculation using (28) and (34) we get  
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for ,  

 

 

Therefore the sufficient condition for which  is 

                                                                             (35) 

We conclude the above finding in the following theorem. 

 

Theorem : 3.8  

            When , the system (26)-(27) has two positive equilibrium points ( )
 
and ( ), 

where  and  are the solution of the equation (28) under the parametric conditions given by (30) and when 

the conditions (33) and (35) are fulfilled at some equilibrium point,  that point must be asymptotically stable. 

 

IV.      Numerical Simulation and Discussion  
Case (i) :  

           When the treatment rate is ∞ to the infective so that 0 ≤  I ≤ I0. We choose the parameters in the model as 

follows. 

 a = 4, d = 0.2, α = 0.2, β = 0.2, λ = 0.3, µ = 0.2, m = 0.02, r = 0.3 and α varies from 0 to 4  

            Here the basic reproduction number R0 = 12.12 >1. The equilibrium position goes lower and when the 

new parameter α increases. Simultaneously when we increase the treatment function r we see that at α = 4 and r 

= 1.5 susceptible population increases significantly. 

            When α = 3, a = 25, β = 0.2, d = 5, m = 20, r = 0.2, µ = 0.2, λ = 0.5 we have  

R0 = 0.1 < 1. In this case the disease dies out. Consider the values of the parameters  

              a = 4, d = 0.2, α = 0.2, β = 0.2, µ = 0.2, λ = 0.3, m = 0.02, r = 0.3  

By rescaling the system we see that u–K < 0 hence there exists the unique positive equilibrium x*= 3.9573 and 

y*= 3.1658. For the above parameters  = 28.8216 and therefore then sufficient condition for stability  

x* <    is satisfied. Hence the point is locally stable. 

 

Case (ii) :  

 When I > I0, the parameters are  

                        a = 3, d = 0.1, α = 2, β = 0.1, λ = 0.3,  m = 0.02, K1= 0.7, µ = 0.1, r=0.3 

In this case = 31 is invariant manifold. The system reduces to 
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Here 0uK   and hence there exists unique positive equilibrium point (x*, y*) where x* = 62.6970 and  

y* = 131.664. For the above choice of parameters  = 100.431 > 0,  = 540.765,  = 5.384 and 

therefore the sufficient condition for local stability. i.e., x* >   is satisfied.  

                In order to see the equilibrium point we have  u1+c<K-cv and u1v<cv. Thus the above equation has 

two positive roots. It can be easily calculated that increasing values of α slightly lowers down (x1, y1) whereas 

pushes up the pair (x2, y2). 
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V.      Graphical Representation  

 
 Figure 1  

 

When a+µ = 25.2, d = 5, λ = 0.5,  = 3, β = 0.2, m = 20, r=0.2, R0 = 0.1 < 1, S(t) approaches to its 

steady state value while I(t) and R(t) approach zero as time goes to infinity, the disease dies out. Here we 

proposed a non-monotone incidence rate of the form λIS = (1+I
2
), which is increasing when I is small and 

decreasing when I is large. It can be used to interpret the “psychological” effect: the number of effective 

contacts between infective individuals and susceptible individual decreases at high infective levels due to the 

quarantine of infective individuals or the protection measures by the susceptible individuals. The recent 

epidemic outbreak of severe acute respiratory syndrome (SARS) had such psychological effects on the general 

public. 

 

 
Figure 2 

          

               When a+µ = 4.2, d = 0.2, λ = 0.3,  = 0.2, β = 0.2, m = 0.02, r=0.3,  R0 = 12.12 > 1, all three 

components, S(t), I(t) and R(t), approach to their steady state values as time goes to infinity, the disease 

becomes endemic. We have carried out a global qualitative analysis of an SIR model with this non-monotone 

and nonlinear incidence rate and studied the existence and stability of the disease-free and endemic equilibria. It 

indicates that when R0 < 1, the disease-free equilibrium is globally attractive (see Figure 1). When R0 > 1, the 

endemic equilibrium exists and is globally stable (see Figure 2).   
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VI.      Concluding Remarks 
SIR Epidemic model with non-monotone incidence rate describes the psychological effect of certain 

serious diseases on the community when the number of infective is getting larger. By carrying out a global 

analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we 

show that either the number of infective individuals tends to zero as time evolves or the disease persists. In this 

paper we see that the basic reproductive number plays an important role to control the disease. When R0 ≤ 1, 

there exists no positive equilibrium, and in that case the disease free equilibrium is globally stable, that is the 

disease dies out. But when R0 >1, the unique endemic equilibrium is globally stable under some parametric 

condition. Also we see that the treatment rate plays a major role to control the disease. When µ= 0, the model 

coincides with that of  Gajendra. et. al. . 

            The stability of the disease-free equilibrium and the endemic equilibrium, we show that either the 

number of infective individuals tends to zero as time evolves or the disease persists. From this model, the basic 

reproductive number R0 has been introduced though the basic reproductive number R0 does not depend on  

explicitly, numerical simulations indicate that when the disease is endemic, I
*
 of the infective decreases as  

increases. From (10) we see that I
* 
approaches zero as  tends to infinity. 
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