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Abstract: In this paper, we employed Standard and Perturbed Integral Collocation methods to find numerical
solution of ordinary differential equations. Power series form of approximation is used as basis function and
Chebyshev Polynomial is used as perturbation term in the case of perturbed Integral Collocation Method.
Numerical Computations are carried out to illustrate the application of the methods and also the results
obtained by the methods are compared in terms of accuracy and computations involved in the two methods. Two
examples each of first and second orders linear integro differential equations are solved to demonstrate the
methods.

I Introduction

Integro differential equation (IDE) is an important branch of modern mathematics and a arise
frequently in many applied areas which include engineering , mechanics, physics ,astronomy, biology
,economics, potential theory and electrostatic[2].

This paper concerns the development of integral collocation approximation methods by power series as
our basis function for the solution of first order integro differential equations .
Many different method have been used to obtain the solution of linear and nonlinear integro differential
equations ,such methods include the Successive Approximation Method, Homotopy Perturbation Method [6],
Adomian Decomposition Method (ADM [13], Wavelet Methods (See [4],[5] ) and so on , to mention just a few
. [1] used the integrated formulation of the Tau method and Error Estimation for over determined differential
equations which actually motivated the beginning of this work.
For the purpose of our discussion, we consider the general nth order integro differential equation of the form :

n i di

Ly(x) = Z(pix @Jy(x) + [keymdt = £(x) (1)
i=0

Subject to the conditions
N .

Ly(X) EZ ay'(x) = & )

i=0
Where P;, are given real numbers, X; are point belonging to the internal & < X <D at which the conditions

are satisfied , f(X) can be polynomial or transcendental or hyperbolic functions and or (¥ > 0) are constant to

be determined.
Here, we let

Denote the indefinite integration applied to the g(X) K times and denote | :J- I I ..... nJ' L(.)dx

1. Numerical solution Techniques
Method1. Standard Integral Collocation Method
This method used the idea of [1] as applied to solve non over determined differential equations.
In[1], f (X) in (1) is a polynomial of degree less or equal to the order of or the differential equation considered
.these methods handle non polynomial or transcendental function which is an added advantage over [1]
(See[11], [12]).
The method does not require truncation or approximation of non polynomial functions.

Also the problem of over determination does not arise in these methods. Without loss of generality, we
integrated both sides of (1), we have
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TR N [—— Peveoeeeeeeeos j[f(x)_j: K(x,t)dt Jdx @

This implies,

[ T jz (p.X )dx [ ]t [FOO - k(nDy@®)dtId 6

We assumed an approximation solutlon of the form

y) =y, (x)=> ax (6)

r=0

=z

Thus, (6) is substituted into (5), we have
)

Hence, we collocate (7) at point  to have

III ........ [ I I (Zn: p; X dd Y (X )dx,

= 8)

X =a+——; k=12 n+1 9)

Thus (8) gives (N +1) algebraic linear system of equations in (N +1) unknown constantsa, (r >0) .
These (N +1) algebraic linear equations are then solved by Gaussian Elimination method to obtain the

unknown constants @, (r > 0) which are then substituted back into (6) to obtain the approximate solution for
the value of N.

Method 2:  Perturbed Integral Collocation Method.

The perturbed integral collocation method is an attempt to improve the accuracy and efficiency of the standard
integral collocation method .

In order to apply this method, we employed the ideas of [11, 12]and the approximation solution (6) is
substituted into a slightly perturbed (7) to get

IIJ' ................. Iz(pxd.)yw(x)dx

(10)
= j j j ...... N j [(x)— j k(x,t)y, (t)dt]dx +H  (x)
Together with the conditions
I—*YN (Xx) = k=@n (11)
Where  H,(X)= Z 7. T,.(X) (12)
And T, (X) are the Chebyshev Polynomials valid in @ < X <b and defined by
T (x) =cos[ncos™ (be_—a_b)]; a<x<b (13)

Substituting (12) into (10), we have

[ 35 (0 Sy, (e
I I I ............... _[ Z (p, ' _)yN (x)dx 14)
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=[] n j[f(x)—j: K(X, 1)y, (©)d]X + 7T, (X) +ooeere 7, Ty (X)

Thus, (14) is collocated at the point X = X ; we have

IJI ............... I Z (p, X, Xii)yN(Xk)dX

J‘J-J‘ ....... N J. Z (pixkidTii)yN (%, )dx
=[] [f(xk)__[: k(X 1)y, (O)dt]dX +7,T, (X ) + oo+ 7, Ty (%)

X = a+M k=12,........... N+n+1 (16)
N+n+1

Hence, we have (N +n+1) algebraic system of linear equations in (N +n+1) unknown constants
(ar (r 2 0), 2-1’ TZ ..............

obtain (N +n =1)unknown constants which are then substituted back into (6) to obtain the approximate
solution for value of N.

rN).The linear equations are then solved by Gaussian Elimination method to

Demonstration with first order integro differentiation equation
We consider here case n=1 in equation (1). Thus, we have

b
PoY(X)  + Pxy '(X) +Lk(x,t) y(t)dt = f(x) (17)
We integrated the terms in (17) to have

jx p, y(t)dt + j p.ty (t)dt + j jb k(z,t)y(t)dtdz = j f (2)dz
p.J y@dt+p, [ y@dt+ [ [ k@ ty@®ddz = [ f(2)dz (18)

Hence, evaluated the integrals in (18), we have

p.f. y@®dt+ ply®F: - [ ydt+ [ [ kzty®dtdz= [ f(2)dz

This implies,

p,[ ydt+ pDy()- [ y@dtl+ [ j k(zt)y(dtdz = [ f(2)dz (19)

Substituting the approximation solution (6) into (19), we have

p [ i a,t"dt+ pl[xi ax - i atia]+ [ [ k(z,t)i atddz=[ f(z)dz

This implies

Po. [Z ax"”

Further S|mpI|f|cat|on glves

Z (p, +1P,)a, r+l+ j j k(z, t)z a t'dtdz = j f (2)dz

ThIS implies

k(z t)z at'dtdz = j f (2)dz

r+1

Z(po+rpl)a 1T6@x=FX (20)

Where
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Gax=[ [ k(z,t)i a t"dtdz
And -
F(x) = j f (2)dz

Thus, from (20), we have.
5 N+1

X X
(p, +4p)a, —+.cone. +(p, +Np,)a, +G(a,x)=f(x) (21)
5 N+1
Hence, we collocated (21) at the point X = X, to have
X, X X,
Po@, Xk + (P, + P1)3y B3 +(P, +2p,)a, 3 +(P, +3p1)ag 4 + (22)
X 5 X N+1
(po+4p1)a4%+ ......... +(p, + Np,)a, l\;‘JrlJrG(a,xk)zF(xk),
Where
X, P L =1.2, ,N+1
N +1
Thus (22) is put in matrix form as
Ax=Db (23)
Where,
A, A, A o Ay i F(x) ]
A, A, A, A, a, F(x,)
A = A Ay Ay Asy X = a and b = F(X3)
H a2
. . . . . ay .
An An Au e A | | F(Xy.1) ]
Where,
Au: PoXy +G(X1): \
2
X
A12 :(po + pl)?_'_G(Xl)
X 3
As=(P, + ZRL)? +G(x,)
X N+1
AlN = (po + Npl) 2 +G(X1)
N+1
A21 = PoX; +G(X2)
2
X
Ay, =(p, + p1)§+G(X2)
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3

Ay = (p, +2p1)%+e(x2)

N+1

X
A2N+(po+Np1)|\|2+1+G(x2)

Ay = PoXs +G(Xs) Ay, =(p, + pl)%w(xs)

3

Ay =Py +2p,) 5 5 C(%)

N+1

X
.A3N =(p, +NP) |\7+1+G(X3)

Ans = PoXy +G(Xy)

2

=(p, + Pl) G(xy)

Remarks, The matrix is solved by Gaussian Elimination method to obtain the unknown constants &, (i > 0)

which are then substituted into the approximate solution (6)

Demonstration of method for case n=2

PoY(X) + Py (X) + p, X7y "(X)+f k(x,)y(t)dt = f(x) (24)
We integrated the terms in (24) to have
b, j j y(t)dtdu + p, j j ty'(t)dtdu + p, j j t2y " (t)dtdu (25)
[ jb k(z)y®dtdudz = [ [ £ (2)ctdu
We simplified each term of (25) to have
N ur+1
t)dtdu = at'dt= = a———— 26
p.[ [ yduu=p,[ [ Z . | Z ] pZ ey @
Xr+2
'(t)dtdu = _— 27
p. [ [ty ®)cdu plZ T (27)
pzj. _[ t2 y"(t)dtdu = pzz ua X" (28)
~ (r+)(r+2) '
We let
X u b N
L j Lk(z,t)Zartrdtdudz:G(a,x) (29)
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And
j: L”f(z)dzdu: f(x) (30)
We substituted (26) - (30) into (25), we have

i r+2 i r+2 i (rz_r) s G( ) F()

a———0+ Q——— + —————a X “+G(a,x)=F(x

p " (r+2)(r +2) perO "(r+2)(r +2) pzr:o (r+D(r+2) "
Thus, from (30) we have

X2 3 4 5 XN+2

—a, +—a, +—a, +—a, +....... +——F—a 31
p{z ° 6 " 12 % 20 ° (N +1)(N +2) N} (3

x* 3x° 2 (N —N)x"*2
+p,| A, +——a,+-a, te A
6 2 10 ° 5 (N+D)(N +2)

+G(a,x) = F(x)
Further simplification of (31) gives

P L +(p +I0)X—3k +£(p + P+ Pp,)x*a, +(p, + p +p)&a

0 2 0 0 1 6 al 12 0 1 2 2 0 1 2 2 3
N2_N XN+2

e +(p0+p1+p2)maN +G(a,x) =F(x)

(32)

Hence, we collocated (32) at the point X = X, to have
2 3 5

X X 5 X
pofao +(p, + pl)%ai +E(po + Py Py)X, By + (P + Py + pz)%ag +

(N 2 N)Xli\H—Z

—(N DN+2) ay +G(a,x,)=F(x,) (33)

........ +(p, + P, + P,)

where x, =a+ =K\ 123 N+L
N+1
'I:hus, (33) is put in matrix form as described in (23), we have
Ar Ar As . Ay a, | - F(x) ]
Ay Ay Ay Ay q F(x,)
.A31 .Asz .Ass -ASN X = -az and b=| F(x,)
_ANl ANZ AN3 ANN aN _F(XN+1)_

Where,

A11 = %Xlz +G(X1)’

A12 = (po + pl)X13 +G(X1)

5
A13 :E(po +p+ pz)X14 +G(X1)
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(o + Py + P,)(N? +1) 1G(%,)
(N+D(N+2)

Ay =
A, = F;O X,” +G(X,)

A, =R+ pl)X23 +G(x,)

5
A23 :E(po + P+ pz)x42 +G(X2)

(P +P + pz)(N +1) ;Hl +G(x,)
(N+D(N +2)

Aoy =
A= 2o x2+G(,)
A, =(p, + p1>x§+e(x3)

5 4
%3 :E(po + P, + pz)X§+G(X3)

(Po+ Pt P)INT v 5y
(N +1)(N +2) % :

A =
Po
Ay = 5 XN+1 +G(xy +1)

AN2 :(po + pl)xg +G(XN +1)
5
ANS :E(po + P+ pz)xﬁﬂ +G(XN+1)

(Pt Pt P)(N*+1) N
NN N+l G(XN+1)
(N+D(N+2)
Remark:
The matrix is solved by Gaussian Elimination method to obtain the unknown constants &; (i>0) which are
then substituted into the approximate solution (6)

2.1.2  Perturbed Integral Collocation Method
An attempt to improve the accuracy of the standard integral collocation approximation Y (X) in section (2.1.1)

is the focus of this section.
In this method, the approximate solution (6) is substituted into a slightly
perturbed equation (5) to get

[ ] jz (p, ;' ]yN(x)dx_ 34)

[t j[f(x)—j:k(x,t)dt}dm H ., ()
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Together with the condition

L*y, (X )=, , k=1D)n (35)
And where,

N
H N (X) = ZTrTr (X) (36)

Substituting (36) into (38), we obtain

[I]om fZ (px; ij(X)dx

37)
[ ][ e J'[f(x)—jabk(x,t)y(t)dt}dx T, (0 ot 7, Ty (X)
Thus, (37) is collocated at the point X = X, we have
III ...... T J' Z (p X, JyN(xk)dx
[ [ e I[f(xk) Ik(xk,t)y(t)dt}dx P T (%) H et T, Ty ()
Where,
xk=a+% k=12,3,..N+n+1 (39)

Remarks
The conditions are taken care after the evaluation of the integral in (38). Altogether, we obtained

(N+n+1) algebraic systems of linear equations in (N+n+1) unknown constants (&, (i >0) 7,7, 7 ).These

linear equation are then solved by Gaussian Elimination method to obtain (N+n+1) unknown constants which
are substituted into (6) to obtain the approximation solution for the value of N.

To demonstrate this method further, we consider case n=1 in (1). After all simplification as in solution (2.1.1),
we slightly perturbed (20).to obtain

r+l

Z(p0 + pl)a +G(a X) = F(X)+ 7, T,(X) +cooe + 7, T (X) (40)

Where G(a, x) and F (X) are as defined in (6).

Thus, we have
2 3 4 5

Pa,x+ (P, +R)a, — X +(P +2P)a2 +(P +3P )a3 + (P, +4PR)a, — 5 ...... + (41)
XN+1
(p, + Np, Ja,, N“—+1+G(a, X, ) = F (%) + 7T (%) + oo, +7, Ty (%)
Where
x —a+CZAK o3 N+n (42)
N+n+1,

Thus (41) is put in matrix form descrlbed in (23) where

Au A, Az Ay ao I F(x,) ]

A An Ayn o Ay a F(X,)

.A31 .ASZ .A33 .ASN ’ X = :az and b= . F(X3)

_ANl ANZ AN3 ANN a'N _F(XN+n)_
Where,,
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A11 = PoXy +G(X1)’

2
A12 = (po + p1)71+G(X1)
3

A, = (P, +2p1)%+e(xl)

N+1
Xl

= N
Ay =(p, + Py 11
A21 = P X, +G(X2)

2

Ay, = (p, + pl)%+e(x2)

+G(x) - (Cél) + Cl(l) X,)

3

A =(po +2p1)%+G(X2)

Ay = poX3+G(X3)

Ay = (P, + pl)%%(xs)
A, =(p, +2pl)X§+G(X3)

N+1

A = (po + Npl) ;3+1+G(X3)—(Cél))—(Cél)x3)

ANl = PoXn +G(XN)
X2
ANZ =(po + p1)7N+G(XN)
3

X
Ays :(po +2p1)?N+G(XN)

N+1

Aw = (po + Npl) ;N_'_l + G(XN )_ (Cél) )+ (Cl(l)XN )

Avins = PoXg +G(Xy.n)

2

X
AN+n,2 = (PO + Pl)?R +G(XN+n)

3

X
AN+n,3 = (PO +2P:I.)?R+G(XN+n)
= NP ﬁ G —(CW c®
AN+n,N _(PO+ 1)N+1+ (XN+n) ( 0 )+( 1 XN+n)

Remark:
The matrix is solved by Gaussian Elimination method to obtain the unknown constants

a(i=0) z,,7,,....,7y ) which are then substituted into the approximate solution (6)
i 102 N

Demonstration of method for case n =2
Thus after all simplifications as in section (2.1.1), (32) is slightly perturbed to obtain
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p X—2a +(p +p)X3a +i(p +p +p, X*a, +(p, + p + P )X—Sa +
0 2 0 0 1 2 12 ¢} 1 2 2 ¢} 1 2 2 3 e
N+1
+(p,+py + pz,((NN ™ 0@ X)=FO T (0 T () )
Hence, we collocated (43) at the point X = X, to have
2 3 5
P—a +(P,+PR) "a1+ (P+P+P)xka +(P+P+P) X a, +..
i A ()
+(P,+P,+ Pz)uaN 16(@,%,) = F() + 7,T, (%) e+ 7 Ty (%)
(N+D(N +2)
(b—a)k ) . . N
Where X, =a+ Ni3 ' k=123,..., N+ 2.Thus, (44) is put in matrix form as described in (23),
where
_A11 A, As . AlN_ _ao— i F(x,) i
Ay Ay Ay Ay q F(x;)

.A31 .Asz .A33 .ASN X = laz and b = .F(X3)

_ANl ANZ AN3... ANN ay _F(XN+2)_
and

AL =20¢ +G(x,),

X
A.'LZ = (po + pl)glG(Xl)
5
A, =E(po + P+ pz)X14 +G(x,)

A (po+pl+p2) +G()

RS ;;3(“2) D 6l (68 + 6% (0 + G +C0)
+ +

A= +G( y

Ay, = ( +p1) (Xl)

> (p, +m+m) G(x,)

A =15

5

A24 =(p0 + Pt pz)x?z"'e(xl)

%N=“j§ﬁﬁﬁ§?ﬂwﬂ+q&%@f+qwﬁ4qaﬂﬁuﬁc9@)
+1)N +

Ay =50 +G(x,)
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Ay, = (p +p1))%3 G(Xs)
Ay, = 12(|o +p,+ pz)x +G(x,)

A, (po+p1+pz) +G()

e ;;NZXN;)+1>X;+2 A N R e
+ +

A =00 +6(x,)

3

X
Az :(po + P, +)€2+G(XN)

5
— (P + Py + Py X5 +G(xy)

Ans =12
A 4= AN4
+p,+p, \IN?+1) .
A - 2 (Npilxp@ﬁ 60681 G ) 45 )

AN+2 1= 2 XN+2 +G(XN+2)

5
AN+2,2 = E(po + P+ P, )X:l+2 +G(XN+2)

5

XN+2 + G(XN+2)

AN+2,N :(po +p+ pz)

Remarks
The above matrix is solved by Gaussian Elimination method to obtain the unknown constants &, (i 2 0) which
are then substituted into the approximate solution (6)

1. Numerical Demonstration.
In this section, we have demonstrated the method discussed here on four examples, two first and two
second orders integro differential equations. We have defined error as

Error=Error = |y(x) — yy(¥)| . a<x<b (45)

Example 1:
We consider the following first order integro differential equation of the form

y'(x)—jolsxty(t)dt ~ 3> %(2x3+1)

With condition given as y(0) = 1and the exact solution as y(X) = &>
Example 2:

y'(x) — y(x) _.[01 Sin (47 x — 2at) y(t)dt = —Cos(22x) — 22Sin27x — %Sin (47x)
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With the condition y(0)=1 and the exact solution is given as y(X) = Cos(27x)

Example 3:
y''(X) +Ifxty(t)dt =x-Sinx, OSXS%
With the conditions given as
y(0)=0 and y'(0) =1
The exact solution is given as y(Xx) = Sinx
Example 4:
117 +1 8x*
"(X)+4xy(X) + 2 tydt = ————, 0<x<1
V"0 +4(9 +2 | ——y(0) T

With the conditions y(0) =1 and y'(0) = % The exact solution is Y(X) = (x* +1) *

V. Tables of Results
Table 1: Errors obtained from example 1 for different values of N
X HAM[6] HAM[6] Standard Standard Perturbed Perturbed
integral integral integral integral
collocation collocation collocation collocation
method method method method
N=10 N=20 N=10 N=20 N=10 N=20
0
0 0 0 0 0 0
0.2
9.50054E-9 5.25769E-9 6.12604E-6 3.14032E-9 8.05735E-7 4. 32105E-10
0.4
3.82421E-4 2.10307E-8 8.03261E-5 1.86232E-8 7.32561E-5 2.00532E-9
0.6
8.60448E-4 4.73192E-8 1.61293E-4 3.17031E-8 6.00532E-5 1.27832E-8
0.8
1.52968E-5 8.41230E-8 9.04215E-5 2.14652E-8 7. 32406E-4 2.57342E-9
1
2.30013E-3 1.33442E-7 1.76112E-3 2.01142E-8 1.25672E-4 1.11456E-8
Table 2: Errors obtained from example 2 for different values of N
X HAM[6] HAM[6] Standard Standard Perturbed Perturbed
integral integral integral integral
collocation collocation collocation collocation
method method method method
N=10 N=20 N=10 N=20 N=10 N=20
0.
0 0 0 0 0 0
0.2
2.5701E-4 4.2117E-6 2.1326E-4 2. 3204E-6 2.0756E-4 7.5461E-7
0.4
4.8001E-4 5.8797E-9 4.1003E-4 7.1325E-9 3.9321E-4 8.5323E-10
0.6
9.7723E-3 4.2112E-8 2.9412E-5 9.7214E-9 5. 3451E-5 5.0176E-9
0.8
9.7723E-3 6.4123E-8 1.7325E-3 5.0321E-8 8.1463E-4 3. 3742E-8
1
1.3021E-3 1.2314E-8 1.0027E-3 1.1327E-8 9. 3241E-4 1.1343E-9
Table 3: Maximum errors obtained for example 3
Method Chebyshev Polynomial | Chebyshev Polynomial | Standard Integral | Perturbed Integral
N Approximation Approximation Collocation Method Collocation Method
[10] [10]
6 1.32E-5 1.75E-4 1.16E-4 2.24E-6
8 1.17E-9 3.08E-8 1.03E-9 2.56E-10
10 1.25E-11 1.35E-9 2.04E-11 3.16E-12
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Table 4: Errors of Example 4

X Wavelet Standard Perturbed
Galerkin{8} Integral Integral
N=6 Collocation Method Collocation Method
N=6 N=6
0 0 0 0
0.125 2.7E-4 1.3E-4 8. 6E-5
0.250 3.1E-5 2. 8E-5 2. 6E-5
0. 375 2.6E-4 7.4E-5 1. 7E-5
0.500 4, 3E-4 3.2E-4 3. 9E-6
0.625 5. 6E-4 5.1E-4 6. 3E-5
0.750 6. 6E-4 1. 9E-5 4. 6E-6
0.875 7.2E-4 6. 2E-5 3.5E-5
1 0 0 0
V. Conclusion

This paper has employed successfully standard and perturbed integral collocation method to solve
special first and second orders linear integro-differential equation.

Power series form of approximation is used as basis function, the application of standard and
perturbed integral collocation methods on some problems including linear first and second orders are
considered. The most important ones are the simplicity of the methods.

Furthermore, these methods yield the desired accuracy when compared the results obtain with the exact
solutions.

All these advantage of the Standard and Perturbed integral collocation methods to solve first and
second orders linear integro-differential equation assert that the methods are convenient, reliable and powerful
tools for the classes of the problem considered.
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