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I.    Introduction 
      In 1992, Troy L Hicks [5]   introduced the notion of  d-complete topological spaces  as  follows: 

1.1  Definition: A topological space (X, t) is said to be d- complete if there is a mapping ),0[:  XXd    

such that (i) yxyxd  0),(  and (ii)  nx  is a sequence in X such that 






1

1),(

n

nn xxd    is 

convergent implies that  nx  converges in  (X, t). 

Troy.L.Hicks and B.E.Rhoades[6]  proved the following theorem in d – complete topological spaces . 

 

1.2   Theorem : Let T be a selfmap of a topological space (X, t) and d : X x X  [0, ) such that OT(u) has a 

           cluster point z  X  . If 

    a )    G(x) = d(x, Tx) is T-orbitally continuous at  z and  Tz 

    b )    T is orbitally continuous at  z   and 

    c )     d(Tx, T
2
x) < d(x, Tx) for all  )(, uOTxx T   ,then  Tz = z.  

  In this paper we introduce 2d - complete topological spaces as a generalization of d-complete 

topological spaces. In fact, we define pd -  complete topological spaces for any integer 2p . For a non-empty 

set  X, let 
pX  be  its  p-fold cartesian product. 

 

1.3  Definition: A topological space (X, t)  is  said to be pd - complete if there is a mapping ),0[: p
p Xd

such that (i) ppp xxxxxxd  ...0),...,,( 2121  and   (ii)  nx  is a sequence in X  with 

0),...,,,(lim 121 


pnnnnp
n

xxxxd  implies that  nx  converges to some point in (X, t).  A  pd -  

complete topological space is denoted by (X, t, pd ) . 

1.4 Remark: The function d in the Definition 1.1 and the function 
2d  (the case p = 2)  in Definition 1.2 are 

both defined on XX   and satisfy condition (i) of the definitions which are identical. Since the 

convergence of an infinite series  


1n

n  of real numbers implies that 0lim 


n
n

 , but not conversely; it 

follows that every d-complete topological space is 2d - complete, but not conversely. Therefore the class of 

2d - complete topological spaces is wider than the class of d-complete spaces and hence a separate study of 

fixed point theorems of self-maps on 2d - complete topological spaces is meaningful. 

   The purpose of this paper is to establish  fixed point theorems of  self-maps  of  

       pd - complete topological spaces  for 2p .  

  

II .   Preliminaries 

               Let X be a non-empty set. A mapping ),0[: p
p Xd  will be called a p-non-negative on  

        X  provided ppp xxxxxxd  ...0),...,,( 2121 . 
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2.1  Definition: Suppose (X, t) is a topological space and  pd  is a p-non negative on X. A sequence  nx  in X 

is said to be a  pd - Cauchy sequence if 0),...,,( 11  pnnnp xxxd  as n . 

     In view of Definition 2.1, a topological space (X, t)   is  pd - complete if there is a p-non- negative pd on   X  

such that every  pd - Cauchy sequence in X converges  to  some point in (X,t). 

  If T is a self map of a non-empty set X and Xx , then the orbit of  x, )(xOT  
is given by 

 ...,,,)( 2xTTxxxOT  . If T is a self map of a topological space X, then a mapping ),0[: XG  is said 

to be T-orbitally lower semi-continuous (resp. T-orbitally continuous) at Xx *  if  nx  is a sequence in 

)(xOT for some Xx  with *xxn   as n  then )(inflim*)( n
n

xGxG




 
      ( resp. )(lim*)( n

n
xGxG


  ). A self map T of topological space X is said to be w-continuous at Xx  if 

xxn   as n  implies TxTxn   as n . 

  If  pd  is a p-non-negative on a non-empty set X, and XXT :  then we write, for simplicity of 

notation, that  

(2.2) ),...,,,(:)( 12 xTxTTxxdxG p
pp

  for Xx   

 Clearly we have  

(2.3) 0)( xGp  if and only if x is a fixed point of  T . 

 

III.      Main results 
 3.1 Theorem: Suppose T is a self-map of a topological space (X, t) and pd  is a    p-non-negative on  X.  

Suppose that there is a Xu such that )(uOT  has a cluster point Xz . If  

 a) )(xG p  is T-orbitally continuous at z and T z 

 b) T is orbitally continuous at z, and  

 c) )()( xGTxG pp   for all )(, uOTxx T   ( the closure of )(uOT  ), 

  then T z = z.  

          Proof: Let )( uTGa i
pi   for 1i . Then, by (c), we get ii aa 1  and therefore 


i

n
alim  exists and 

           in fact, i
i

ainf . Since z is a cluster point of )(uOT , there is a sequence  uT ki  in )(uOT  such that 

zuT ki   as k . Therefore, by (a), we have  

   (3.2)  
kik

p azG


 lim)(  

           Also, it follows from (b) that TzuTTuT kk ii



)(

1
 as k  and since )(xG p  is T-orbitally 

continuous at Tz  we get 

    (3.3)   1lim)( 



kik

p aTzG  

           Now (3.2) and (3.3) imply that )()( zGTzG pp   which forces zTz   (For if  T z z, then (c) gives 

)()( zGTzG pp  ). 

 

IV.    Consequences 
  To present certain consequences of the main result, we introduce some notations: 

        If pd  is a p-non-negative on a non-empty set X and T  is a self-map of X, then for any      

        x, y  X  we write  

(4.1)   ),...,,,,(),( 22 yTyTTyyxdyxH p
pp

   

(4.2)   ),...,,,(),( yyyxdyxE pp     

 Clearly 

(4.3)  )(),( xGTxxH pp   and 0),( xxE p .  

4.4  Theorem: Let T be a self-map of a topological space (X, t) and pd  be a  p-non- negative on X. Suppose  

       that there is a  u  X such that )(uOT has a cluster point  z  X.  If   
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a) )(xG p is T-orbitally continuous at z and T z 

b) T is orbitally continuous at z, and 

c) 
)(

)(
),(

2

1

xM

xM
TyTxH p  , where 

 ),().(),,().(),,().,(),,().,(max)(1 TxyEyGTyxHxGTxyEyxHTyxHyxHxM pppppppp  

and  ),(),,(max)(2 TxyETyxHxM pp  for all Xyx ,  with Tyx   or Txy  , then zTz  . 

Proof :  Taking y = T x in the inequality of the theorem and using (4.3), we get  

  

 

)()(

),(

),().(
)(

),(

),().(),,().(max
)(

2

2

2

22

xGTxG

xTxH

xTxHxG
TxG

xTxH

xTxHxGxTxHxG
TxG

pp

p

pp
p

p

pppp
p







 

 and therefore the theorem follows from Theorem 3.1.  

4.5  Remark:    Note that, the result of Hicks and Rhoades ([6], Corollary 3, pp.849) is a particular case of                     

Theorem 4.4  and the corresponding result for metric spaces has been proved by Achari ([1], Theorem 1). 

4.6  Theorem: Let T be a self-map of a topological space (X, t) and pd  be a  p-non- negative on X. Suppose that 

there is a  u  X such that )(uOT  has a cluster point   z  X.  If  

       a) )(xG p  is T-orbitally continuous at z and T z 

       b)  T is orbitally continuous at z, and  

       c) 












 ),().,().,(,
),(

)().(
),,(max),( TxyEyxHyxA

yxH

yGxG
yxHTyTxH pp

p

pp

pp  

         for all Xyx ,  with yx  , where ),...,,,(),( 2 yTTyyxayxA p  and ),0[: pXa . Then  zTz  . 

     Proof: Taking y = T x in the inequality of the theorem and using (4.3), we get 

 )(),(max)(

)(

)().(
),(max)(

TxGxGTxG

xG

TxGxG
xGTxG

ppp

p

pp

pp
















 

    which implies )()( xGTxG pp   and therefore the theorem follows from Theorem 3.1. 

4.7 Remark:   Note that, the result of Hicks and Rhoades ([6], Corollary 4, pp.849) is a particular case of 

Theorem 4.6  and the corresponding result for metric spaces has been first proved by L. B. Ciric ([2], Theorem 

2). 

4.8 Theorem: Let T be a self-map of a topological space (X, t) and pd  be a p-non-negative on X. Suppose that 

there is a  u  X such that )(uOT  has a cluster point z  X.  If 

      a) )(xG p  is T-orbitally continuous at z and T z  

      b) T is orbitally continuous at z and 

      c)  ),()()(),(),(),(),( 4321 TxyEayGaxGayxHayxHyxHTyTxH ppppppp    

    ).()(5 yGxGa pp  

       for all Xyx , , where 0ia  and 




5

1

1

i

ia . Then zTz   and z is unique. 

      Proof: Taking y = T x in the inequality of the theorem and using (4.3), we get 
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        which gives )()( xGTxG pp   and therefore the theorem follows from Theorem 3.1.  

4.9 Remark: Note that, the result of Hicks and Rhoades ([6], Corollary 5, pp.849) is a particular case of 

Theorem 4.8  and the corresponding result for metric spaces has been first proved by K.M. Ghosh ([4], Theorem 

2). 
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