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Abstract: In this paper the quantum aspects are described in-detail with the help of a new type of energy 

source called latent energy group SU(6) of the super unified theory of SU(11). The thermodynamics of general 

self gravitating systems created by the energy group SU(6) and some related topics such as complex space-time 

(i.e. Pseudo-Space-Time) are also briefly discussed.  

 The thermodynamic connection is based on Hawking celebrated application of quantum theory to 

Black-Hole. 

We know that macroscopic systems have definite and precise energies, subject to definite conservation 

principle. In this paper the generalized theory of black-hole is examined in-detail. We study the quantum state of 

black-hole. We consider our universe begins through the symmetry breaking of the super unified theory with 

gauss group SU(11) [  SU(6)  SU(5)  U(1)] from 7-dimensionsl space-time. The subgroup SU(6) has been 

interpreted as a new type of energy source other than SU(5) [SU(5)  SU (3)  SU(2)  U(1), where SU(3), the 

strong energy group, SU(2) the weak-energy group and U(1), the electro-dynamics]. The energy group SU(6) 

are responsible for the situation of the so-called black-hole and U(1), also for the creation of Schwarzschild 

mass ‘M’ and angular momentum ‘J’, as U(1) are responsible for the creation of electric charge ‘e’[ where M 

& J- depends on ‘e’ as shown in this paper]. We consider the line element proposed by the quantum-vacuum 

Kantowski-Sachs universe without cosmological constant. We also consider the scale factor b(= iR) of the 

metric to be imaginary and the other a( = R) is real, of the Kantowski-Sachs quantum-state with complex space-

time. Solving the metric tensors we get the energy tensors   
    

        
    

   in the 10(= 4+6)

dimensional spacetime under the exchange RI ↔ R. We think from 10-dimensional to 7-dimensional stage, the 

situation of primordial black-hole formed by the energy group SU(11). The fact is obviously defined within 10-

dimensional to7-dimensional flat universe and then the black-hole formed within 7-dimensional to 4-

dimensional closed universe through the symmetry breaking of the energy group SU(11), the negative pressure 

by   
    

           
   is define the matter energy density and   

  is define the latent energy density. At the 

early stage         
    

     The universe then begins its journey through the phase transition system. 

 

I.   Introduction: 
The region inside the horizon, once the star has shrunk away to nothing, is empty (i.e. in another phase) 

and from the exterior universe, black and inaccessible (according to our instrument). It is therefore called a 

Black-Hole. Astronomers widely believe that black-hole will form as the natural end state of the evolution of 

massive stars, but so far there is no direct observational evidence of their existence.  

The most general known solutions to Einstein‟s field equations of general relativity which contains 

black-holes are the so-called Kerr-Newman family, which describe an asymmetric, matter-free space-time 

representing a black-hole which rotates and carries an electric charge. These solutions from a three-parameter 

set, labeled by the total mass energy M, the angular momentum J = | J | and the electric charge „e‟. 

The change of a larger group SU(11) of symmetries to the subgroup SU(6)  SU(5)  U(1) is 

spontaneous by the re-distribution of energy particles. The above subgroup which contains the U(1) group, there 

inevitably arises particles (whose annihilation formed charge particles) that have the characteristics of a 

magnetic mono-pole. Typically, the mass of a mono-pole (in energy units) may be ~     Gev (Plank energy). 

Monopoles are highly stable particles and once created they are not destructible. And so they would survive as 

relics to the present epoch. Hence charge „e‟, of the black-hole formed by U(1) and survive as back-ground 

radiation from the black-hole. The explanation of another two energy groups SU(5) and SU(6) of the SUT 

energy group SU(11), we begin with the analogy of ferro-magnetism and crucial role of the Curie-temperature 

(       for iron). Above this temperature a bar of iron shows no magnetism in an external field. This is because 

its elementary nuclear magnets are randomly aligned with no resultant magnetization. Energetically, this is the 

lowest state for the bar and it chooses to remain in that state as the most stable one. Bellow the Curie 

temperature the state of lowest energy changes to that in which all the nuclei are aligned along the bar, which 

develops polarity at its ends. There are two states of the same lowest energy possible, depending on which 

(north or south) of the two poles falls at a given end. The ultimate choice of one state apparently breaks 

symmetry although theoretically and inherently the symmetry is always there. In the early universe something 

similar happens to the super unified theory SU(11) and then SU(5). Above like a critical temperature Tc, the 
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vacuum state, the state of lowest energy, is none other than the potential φ = 0. Below   Tc,   the state of lowest 

energy of the thermo-statistical particles are changed. It now corresponds to a situation when φ has non-zero 

values. Corresponding to states of the same lowest energy, let us suppose that there exist alternative values     (i 

= 1, 2, 3, ….) which now acquire that status of vacuum. There are basic symmetry with respect to all   , but in 

practice the system may spontaneously acquire one of them. This is again an apparent break-down of symmetry.  

The consequences of this for the very early universe are that it is divided into different domains, each 

with a different value of   . In this way the universe acquires discontinuities along the domain walls. These 

translate into highly significant discontinuities of matter distribution. The fact that we do not see such 

discontinuities in actuality (say in the form of large sheets of matter) is hard to explain away. This difficulty is 

known as the domain wall problem.  

The intersection of two domain walls is a linear structure known as „cosmic-string‟ such filamentary 

structure have been invoked in scenarios for galaxy formation.   

 

II.     Super Unified Theory: 
In the theory of Gauss transformation in physics, the special unitary group is used to represent bosonic 

symmetries. In the theories of symmetry breaking, it is important to find the subgroups of special unitary group. 

Important subgroups of SU(n) that are important in GUT physics(also in the present dissertation). Super unified 

theory  are,  

                      For     p > 1, n-p > 1   with     SU(n)  SU (p)  SU( n – p)  U(1).  

For completeness there are also the orthogonal and sympletic subgroup :       SU(n)  O(n); SU(2n)  US p (2n)

   

Since the rank of SU(n) is n-1 and U(1) is 1, a useful check is that the sum of the ranks of the subgroups is less 

than or equal to the rank of original group SU(n) which is a subgroup of various other lie group: SO(2n)  

SU(n).  

From the symmetry breaking of SU(11), we find SU(6) and SU(5) as the subgroups of SU(11), where p (= 5) > 

1;  n-p (= 11-5 = 6) > 1, so that SU(n)  SU (p)  SU( n – p)  U(1). i.e. SU(11)  SU (5)  SU( 6)  U(1). For 

completeness there are also the orthogonal and sympletic subgroups: SU(11)  O(11) ; SU(22)  US p (22). 

Since the rank of SU(11) is 10 and U(1) is 1, a useful check is that the sum of the ranks of the subgroup SU(5) 

and SU(6) is less than or equal to the rank of the original group. Thus, we have from SU(11), the Hermitian 

matrix H has 120 arbitrary constants. Which correspond to 120 bosons that now mediate between the different 

basic entities. Of these we already have 24 from SU(5) and 35 from SU(6) and 1 from  U(1).  

Thus, 120 – (24 + 35 + 1) = 60 more bosons are needed to make up the list of 120. For want of any 

specific designation, they are referred to simply as the J bosons. The J bosons are expected to link the 

participants of SU(6) with SU(5) i.e. with SU(2), SU(3) and U(1). There are emitted and absorbed    ̅  particles 

(anti-J particles). Therefore, in the theory of SU(11), it is possible to change any of 30(thirty) latent energy 

bosons of SU(6) into any of the 30(thirty) matter energy bosons of SU(5) or vice-versa by the exchange of the J-

bosons of SU(11). So at this stage, by the symmetry breaking of SU(11) created an amount of matter energy 

SU(5) by the latent energy group SU(6), and an angular momentum „J‟ & Schwarzschild „M‟ of the black-hole 

by the energy group U(1). After then SU(5) breaks into                  .  

In the present dissertation there neither any starting point nor any ending point of the wider 

(measurable in quantum cosmology) universe (having complex space-time). Only there exists an initial and final 

condition for narrower (measurable classically) universe (i.e. Einstein 4-dimensional space-time) which 

emerged from wider universe by the process of changing phase, where it was a continuous process.  

Again, on the other-hand, the idea that our 4-dimensional universe might have emerged from a higher 

dimensional space-time is now receiving much attention where the compactification of higher dimensions plays 

a key role. However, the question arises of how and why this compactification occurs. From string theory we 

know that the compactification may take place provided that the higher dimensional manifold admits special 

properties, namely if the geometry of the manifold allows, for example, the existence of a suitable killing vector. 

However, it is difficult to understand why such manifolds are preferred and whether other possible mechanism 

for compactification do exist. In cosmology, on the other-hand, different kinds of compactification could be 

considered. For example, in an approach, called dynamical compactification, the extra-dimensions evolve in 

time towards very small sizes and the extra dimensional universe reduces to an effective 4-dimensional one. 

This type of compactification was considered in my previous published paper [„The complex model of the 

universe‟ of IOSR-JM, vol.2, 4 (2012), pp-41] with the help of Modern Kaluza-Klein theories. It is then a 

natural question that how an effective four dimensional universe evolve in time and whether the resulting 

cosmology is similar to the standard FRW four dimensional universe without extra dimensions. A universe may 

based on the considerations of dark energy sector. One may start from a fundamental theory including both 

gravity and standard model of particle physics. In this regard it is interesting to begin with 10 (= 4 + 6)-

dimensional space-time, in which case one needs a compactification of 10-dimensional super gravity theory 
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where an effective 4-dimensional undergoes acceleration. However, it has been known for sometime that it is 

difficult to derive such a cosmology and has been considered that there is a no-go theorem that excludes such a 

possibility, if one takes the internal space to be time-independent and compact without boundary. However, it 

has recently been shown that one may avoid this no-go theorem by giving up the condition of time-

independence of the internal space, and a solution of the vacuum Einstein equations with compact hyperbolic 

internal space has been proposed based on this model. 

On the other-hand, from cosmological point of view it is not so difficult to find cosmological models in 

which the 4-dimensional universe undergoes an accelerating expansion and the internal space contracts with 

time, exhibiting the dynamical compactification. In my paper we consider the internal space as imaginary 

(pseudo- space, b = iR) of the Kantowski-Sachs universe, where the matter belongs to another phase by the 

phase transition system with the help of the latent energy group SU(6).   

 

III.    Intelligence:  SU(6) 
In the transformations under the energy group SU(6), the basic fields here are the latent energy field 

and we have  

               U = exp (- iH),                     

Where „H‟ is a 6  6 Hermitian matrix of  zero-trace. The matrix H now has 35 independent components. In the 

weak interaction SU(2), we have, H has  2  2 Hermitian matrix  of zero-trace and the most general form of 

such matrix is  

                                    

 

                                                                                                                                                                        (1) 

 

Thus, like above, we have 35 matrix charges I
1
, I

2
, I

3
,……….I

35
  out of which five matrices  are diagonal. 

Corresponding to this, we have 35 bosons. For want of any specific designation, they are referred to simply as 

Jk. 
There were no change takes place for exchanging the bosons namely J

k3
, J

k8
, J

k15
, J

k24
, J

k35, corresponding to 

the said five diagonal matrices. We expect the participating interactions of the bosons Jk to have comparable 

strength. The Jk bosons are expected to generate a latent force. This force is believed to be potentially so large 

that the exotic matter fluid are expected to transfer into the ordinary matter field constituting a black-hole at the 

centre region. 

 

IV.    Excess production of Jk bosons in the very early universe: 
 Let us denote the mass of the Jbosons by mJ, and its coupling strength by J. The coupling strength 

depending on what type of particle J is, let us denote by      the rate of collisions that do not conserve the number 

of Jk bosons, i.e. collisions in which the Jboson is involved. Denote the characteristic decay rate of the Jboson 

by J, we thus have three time scales to play with:               and         . 

 

At the earliest epochs, with constant temperature >10
19

 GeV, the latent energy was the strongest force between 

the various constituents of the universe. Other interactions were unimportant under the hypothesis of asymptotic 

freedom. As the universe continued to changing phase and its constant temperature dropped there is a phase 

when gravity as well as latent force become weaker while the other interactions still remained unimportant. 

Thus for T < 10
19

 GeV, the particles remained essentially free for some time.  

During this phase it becomes necessary to examine the nature of distribution, functions are as follows. 

Assuming ideal gas approximation and thermodynamic equilibrium, it is then possible to write down the 

distribution functions of any given species of particles. Let us use the symbol L to denote typical species (L = 1, 

2, ….). Thus nL(P)dp denotes the number density of species in the momentum range (P, P + dP),  where  

 

   

                                                                                                                                                                        (2) 

 

 

Where T = the temperature of the distribution, g
L
 = the number of spin states of the species, k = the Boltzmann 

constant and       is the energy corresponding to rest mass m
L
 of a typical particle. The 

quantity μL is the chemical potential of the species L. We set μ
L
 = 0, g

L
 = 1, m

L
 = 0, for J

k
 bosons. Since 

particles and antiparticles annihilate in pairs and produce J
k
 bosons their chemical potentials are equal and 

opposite. Again we saw that for T < T
J
, the distribution function cannot preserve its form under changing phase. 

Thus it may get distorted from its equilibrium form. Now of the various species in the very early universe, the 
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Jbosons are probably the most massive. Thus, provided they have a high enough value T
J
, there is a chance that 

the J bosons will first dropout of equilibrium. For this to happen, however, it is also necessary that they have not 

all decayed by then. The collision rate                        

                              A comparison of the three rats shows that                       .     . 

Hence, in this situation, the gravity became so strong that means the amount of equivalent energy is adequate 

and formed like black-hole, i.e. gravitationally strong region at the centre of the matter distribution within event 

horizon. 

And soon after gravity become weak that means the amount of equivalent energy was distributed, then the 

changing phase of the universe with the essentially no interaction between the species.  

 

V.    The field equation in complex quantum state: 
The work covered in the Einstein field equations did not  tell us the important item of information 

about  the universe is what  happened, when the  volume of the matter universe squeezed into zero volume and 

there  before. To find the answer to this question it is necessary to do beyond the concept of Einstein universe. 

We need a new concept with the Einstein‟s universe to proceed any further, and Einstein‟s general relativity 

with complex spacetime is one of such theory. We will consider alternative approaches to cosmology but for 

the present is KantowskiSachs universe. We have the line element to start with:  

                              (3) 

 

The only nontrivial Einstein equations of the above metric           

                                                                                                                                                                    (4)                                                                                                                                                                                                                                        
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For,  considering  N = 1 ,   we have          
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Where c
/

is the velocity of photonlike particle in vapor stage and c
/

> c, the velocity of photon.  

We next consider a = R & b = iRI, [where                  ]. Then the equation (7), (8) & (9) becomes  
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Before we consider specific forms of   
   it is worth noting that three properties must be satisfied by the energy 

tensor in the present framework of cosmology. The first is obviously define negative pressure by    
    

                                           
The second    

   is define the matter density and the third     
  is define the latent energy density. 

 

If    
    

        then   
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                                                                                             (13) 

 

If RI     R at 10-dimensional, then,    
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Case-I, when D=6, then 
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Now, at D=6, RI  R, i.e., we have, a single scale factor, by putting RI = R, 
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Case-II, when D=3, and RI = R 
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Case-III,             when D=0, and RI = R, then            
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VI.   For  Isotropic-Universe (Einstein‟s 4-dimensional Space-time): 

We have from [case III], i.e. , considering 
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Thus isotropic universe were possible when the space-time goes to infinity.  

 

VII.     Cosmology with complex scale factor: 
Consider the metric in which the space–time is assumed to be of Robertson–Walker type having a 

complex scale factor R + iRI , where  the scale factor R stands for (3 +1) – dimensional space–time  and iRI ( = 

b) is that for the internal space with dimension D. Avoiding the imaginary term, the line element can be 

expressed in the form 

                                    

 

                                                                                                                                                                   (14) 

 

 

where N(t) is the lapse function,  r
2
 = x

i
 x

i
 ( i = 1, 2, 3),  

2
 = y

a
y

a
 (a = 1, 2, 3,......, D) and k, k

/
 = 0,  + 1, for flat, 

closed or open type of 4–dimensional universe and D–dimensional space. For simplicity, we assume the internal 

space to be flat i.e. k
/
 = 0. The form of energy–momentum tensor is chosen as  

  TAB = (–, p, p, p, p
D
, p

D, ...............,  pD  
)                                                 (15) 

Now, we examine the case for which the pressure along all the extra–dimensions vanishes, namely, p
D

 = 0.  In 

doing so, we are motivated by the brane world scenarios where the matter is to be confined to the 4–dimensional 

universe, i.e. auxiliary hyper–space, so that all components of T
AB

 is set to zero but the space–time components 

and it means no matter escapes through the extra dimensions.  

We assume the energy–momemtum tensor T to be that of an exotic fluid with the equation of state        

                                               

                                                                                                                                                                   (16) 

       

Where p

 and 


 are the pressure and density of the fluid, respectively and the parameter m is restricted to the 

range  

0 < m < 2, so that there is violation of strong energy condition and the universe experiences accelerated 

expansion.  

The scalar curvature corresponding to the metric (14) has the expression  
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Now substituting it into the dimensionally extended Einstein–Hilbert action (without higher dimensional 

cosmological term) including a matter term indicating the above mentioned exotic fluid the effective Lagrangian 
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where dot represents the derivative with respect to t. We shall show an equivalence between (k = 1) and (k = 0) 

universes which are favored by observations.  The continuity equation, by using the contracted Bianchi identity 

in (4+D) dimensions, namely 

                           (19) 

together with the assumption that  the matter is confined to (3 + 1)  dimensional space–time gives   i T
ij
 = 0 

   i.e.                         (20) 

 

Using (9) into the continuity equation (13), the energy density in a closed (k = 1) Friedmann–Robertson–Walker 

universe is  

                            (21) 

 

where Ro is the value of R at an arbitrary reference time to. 

Again, if we believe that the cosmological term plays an important role in vacuum energy density,  then we may  

the cosmological term as  

      
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(R). 

i.e.           
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Taking   m = 2 and    

      We have                             (24) 

 

The lapse function N(t), is an arbitrary function of time due to the fact that Einstein‟s  general relativity  is a 

reparametrization invariant theory.  We therefore, take the gauge  
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and then Lagrangian (22)  becomes  
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We now define the new variables  

   X = log R,   Y = log RI                                  (27) 

Then the equation (26) becomes  
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The equation of motion are obtained  
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Solving equations (29) and (30) we get,  
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                        (34) 

 

               

    and                                                                                                                                                    (35) 

                                                                                                                                                                            

Where as usual p and  are the pressure  and energy density, respectively.  

Now, considering   S = R + iRI,                                   (36) 

We have from (34)          

 

i.e.  

 

 

 

Separating real and imaginary parts, we get  
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Again, from the equation (28)  using S = R + iRI and separating real and imaginary part, we have  
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Using the equation of state (16),  is given by   
   

       
 
 

 

  

       [                        (48) 

                      

Then                
 

 
 

      

       
 
  

                                                                                       (49) 

 

We have from equations (41) using (46) and (49) 
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[where               ,  a constant with respect to time „t‟].  

 

 

Now, integrating the above relation we get  

                      (51) 

 

 

where B and C are integration constants.  

Now, we consider, at  t = 0, the  plank time, R(0) = RI(0) = p. 

Then  from the above  equation  we get   

 

 

Therefore 

                      (52) 

From, the above equation, we can calculate the exact time, when SU(11) breaks into SU(6), SU(5). That means 

when the actual vacuum energy breaks into positive energy, negative energy and latent energy.  

The solutions for X and Y from equations (31) and (32) are  
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/
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/
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size p in accordance with quantum cosmological considerations.  
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It is important to note that the constants ,  are not independent and a relation may be obtained between them. 

This is done by imposing the zero energy condition H = 0 which is the well–known result  in cosmology due to 

the existence of arbitrary laps function N(t) in the theory. The Hamiltonian constraint is obtained through the 

legender transformation of the Lagrangian (28) 
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R = RI = p (a time independent scale factor)  

Therefore, for D > 1, we have         

    

 

 

 

and   

 

 

 

So                       (56) 
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and                          (58) 
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Substituting (56), (57), (58), (59) in (52), we also get an equation of time t, by solving this, we get, the exact 

value of the time. It is seen that the time is dependent on the extra–dimensions D. It is easy to show that the 

Lagrangian (28)  

(or the equations of motions) is invariant under the transformation  

              
                                                             (60) 

Which is consistent with the time reversal t  –t.  

For the special case, when D = 3 (i.e. 4 + 3 = 7-dimension), both the Lagrangian (28) and the Hamiltonian (53) 

are invariant under the transformation                . 

Therefore, we have a dynamical symmetry between R and     namely      . In this case there is no 

distinction between RI and R to single out one of them as the real scale factor of the universe. Because k
/
 = 0 and 

according to (26), we assume the 4D-universe with k,    0 to be equivalent to the one in which k =  = 0. 

Therefore both have the same topology S
3
.  

So, there is a flatness between 10-dimensional universe to 7-dimensional universe. Hence there is a link with an 

extremely fine tuning of the universe to the flat (k = 0) model. If this tuning was not there, the universe could 

either have gone into a collapse (k = 1) or an expansion to infinity (k = -1) in time scales of the order of 10
-35

s 

that were characteristic of the GUT era.  

Now the entropy in a given co-moving volume stays constant in adiabatic expansion. In the entropy was 

conserved then we would have RT = constant, where R is the scale factor and in the black-hole problem T = 

10
19

 GeV. However, we found that in the flatness problem this hypothesis led to fine tuning while for the 

horizon problem it gave an extremely small size of homogeneity. It therefore appears that the trouble of black-

hole lies between 10-dimensional to 7-dimensional flat universe and it could be resolved if the adiabatic 

assumption were violated at this stage. So, we conclude that, within the event horizon from 10-dimensional 

super-gravity stage, there are mainly two stages, one at the very early stage, were flatness then closed and as 

well as rotational stages for black-hole. So, in the late time, we have a symmetry breaking of the energy group 

SU(11) [SUT] of the flat universe at 7-dimensional space-time and gave three fundamental energy groups 

SU(6), SU(5) and U(1) within the horizon, where U(1) being a charge particle. 
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quantization procedure, namely vanishing of the variation of the Einstein –Hillbert action S with respect to the 

arbitrary lapse function N.  

 

Thus,        

                                                             

which is written as                                        (61) 

     

This equation is known as the Wheeler–DeWitt (WDW) equation.  The goal of quantum cosmology by solving 

the WDW equation over the complex space (R + iRI) is to understand the origin and evolution of the universe.  

In principle, it is very difficult to solve the WDW equation in the super space due to the large number of degrees 

of freedom. In practice, one has to freeze out of all but a finite number of degree of freedom of the gravitational 

and matter fields. This procedure is known as quantization in mini–super–space, and will be used in the 

following.  

The mini–super–space in our model is two dimensional with gravitational variables X and Y. To obtain the 

Wheller–DeWitt equation, in this mini–super–space, we start with the Lagrangian (28). The conjugate momenta 

corresponding to X and Y are obtained as   
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Hence from (10), (11) & (12), we get                                                                           (69) 
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Now, it is clear that, when       then      .Which is possible for 6+4 =10-dimensional 

spacetime. Then the equations (69) & (70) are identical  
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IX.    The quantum state of the black-hole: 

 A spherically symmetric black-hole with mass M and electric charge e is described by the space-time 

metric 
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Where         and r is a radial co-ordinate chosen to make the surface area of a sphere of radius r equal to   

    , as in Minkowski-Space. 

Comparing the equation (3) with (75), we have 
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Thus from (77) & (78), we get, 
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When     , at 7 – dimensional space-time, then  
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Thus, the metric (75) is evidently singular at  
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These are not singularities in the geometry itself but in the co-ordinate system (t, r), similar to these which occur 

to latitude and longitude on the surface of a sphere at the poles. In fact, the outer surface   corresponds to the 

event horizon:  notice that                This surface has global significance, but locally an internal 

observer would find nothing unusual about the space-time geometry there. The inner surface     is another type 

of horizon inside the hole- itself. 

X.     Thermodynamics with gravity: 
An astronomers, however, have long had to contend with the conjunction of thermodynamics and 

gravitation. In the broadest sense, thermodynamics regulates the organization of activity in the universe, and 

gravity controls the dynamics, at least on the large scale. 

One of the central difficulties about the thermodynamics of gravitating systems is the apparent absence 

of true equilibrium. This problem, which can lead directly to „peculiar‟ effects, has long been known to 

astronomers. Stars are hot, self-gravitating balls of gas inside which the weight of the star is supported by its 
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own internal kinetic or zero-point quantum presence. Unlike ordinary laboratory thermodynamic systems, a star 

is made hotter, not by adding energy, but by removing it. We consider the change takes place by the latent 

energy group SU(6) into the matter energy group of SU(5) of the super unified group SU(11) and vice-versa. So, 

initially heat can be found from internal energy of the thermo-statistical particles. 

 

XI.   Creation of Black-Holes: 
The key to understanding black-holes, and especially their connection with thermodynamics, is to 

appreciate the meaning of the so-called event horizon. Consider a very compact and massive star. The strength 

of gravity [due to the excess production of Jk
 bosons of SU(6) in the very early universe] at its surface can be 

increased by the decomposition of the energy group SU(11) from another phase by the phase transition system. 

In the very early universe the production of Jk
 bosons are much more and hence more bosons of the matter 

group SU(5) were increased by changing the energy particles of the group SU(6). According to our assumption, 

our universe started from the 10-dimensional super-gravity in the large scale and there is a flatness with the 

compactification of extra-dimension up-to 7-dimensional universe. According to the Einstein‟s 4-dimensional 

universe, gravity affects the properties of light, and this is manifestation in the behavior of light rays which 

leave the surface of the star travelling radially outwards. Because the light has to „do work‟ to overcome the 

surface gravity and escape from the star, its energy, and hence frequency, will be some-what diminished. This 

famous gravitational red-shift has been measured in light leaving such relatively low gravity objects as the Sun, 

and the Earth. For more compact and massive objects the red-shift can become enormous. Even on Newtonian 

grounds it is clear (as pointed out by Peirre Laplace as long as 1798) that when the escape velocity from the 

surface of a star exceeds that of light, something odd must happen. Accordion to both Newtonian gravity and 

relativity, this turn of events comes about for a spherical, uncharged star if the radius of the star shrinks below 

2GM /c², where M is the mass, c is the speed of light, and G is the Newtonian gravitational constants. This size 

is very small, being of the order of 1 km for the Sun and 1 cm for the Earth. A straight-forward calculation 

shows that as the star approaches the critical radius, the light from its surface becomes red-shifted without limit, 

so that it can no longer been seen; it is black. 

A useful picture of the event horizon can be obtained by imaging spherical wave-fronts of light which 

are emitted radially outwards from different surfaces r = constants. Those spheres travelling from r > 2GM / c² 

gradually expands and eventually escape to infinity, but those emitted inside the critical radius actually shrink 

towards the centre, even though they are emitted in a direction away from the centre. Crudely speaking, the 

gravity there is so strong that it drags the light back-wards. The event horizon is the spherical surface of light 

that just escapes to infinity after an infinite duration. 

According to relativity, matter and information cannot propagate faster than light, so if light can- not 

escape from inside the horizon, neither can anything else. Thus, once the star has retreated through this surface it 

can never return to the outside universe. 

The region inside the horizon, once the star has shrunk away to nothing, i.e. in other phase, is empty 

and from the exterior universe i.e. from the present phase, black and inaccessible. It is therefore called a black-

hole. Astronomers widely believe that black holes will form as the natural end state of the evolution of massive 

stars, but so far there is no direct observational evidence of their existence. The most general known solutions to 

Einstein‟s field equations of general relativity which contain black holes are the so-called Kerr-Newman family, 

which describe an asymmetric, matter-free space-time representing a black-hole which rotates and carries an 

electric charge. These solutions form a three-parameter set, labeled by the total mass-energy M, the angular 

momentum J = | J | and the electric charge e. For J = 0, suggests that flatness occurred from 10-dimensional to 7-

dimensional universe [ as the equation (28) & (53) are invariant under the transformation       ] and then 

from 7-dimensional to 4-dimensional that black-holes have a very high entropy, and represent in some sense the 

maximum entropy, equilibrium end state of gravitational collapse. 

 

XII.     The Laws of Classical Black-Hole „Thermodynamics‟: 
There is a general tendency for self-gravitating systems to grow rather than shrink because gravity 

always attracts. The behavior between the black-holes and thermodynamic equilibrium systems were noted 

some time ago (for a review see Carter 1973). In the black-hole case, the inability for light to change from inside 

the event horizon precludes the escape of any material, so the horizon acts as a sort of asymmetric one-way 

surface: things can fall in and make the hole bigger but not come out and make it smaller that means changes to 

another phase. This is reminiscent of the second law of thermodynamics, in which there is an asymmetric 

tendency for a one-way increase in entropy. The size of the black-hole is analogous to the entropy. The above 

statement can be explained as, in the theory of SU(11), it is possible to change any of 30-bosons of SU(5) of the 

matter energy group into any of 30-bosons of SU(6) of the latent energy group and vice-versa by the exchange 

of J-bosons of SU(11). 
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The analogy is almost trivial for a spherical, electrically neutral (Schwarzschild) black-hole. In the 

more general case of black-holes that possess angular momentum J by SU(6) and electric charge e by U(1), the 

size of the black hole depends both on J and e in a rather complicated way. If the total surface area of the 

horizon is used as a measure of size then this is given by the formula (Samrr 1973):   

                 (  
  

   
  

  )

 

 
                                                                             (83) 

           [Where,          
  

 
  ,  by the equation (81)]                                                        

Where e² < M² and J² < M⁴ (throughout, units with G = c =1 will be used) so it is clear at a glance whether a 

disturbance to the black-hole which changes both e and J, as well as M, will always increase the total area. 

An example due to Penrose (1969) concerns a method for extracting mass-energy from a rotating black-hole. 

The mechanism consists of propelling a small body into the region just outside the event horizon where (due to 

dragging effect on the space surrounding the black-hole caused by its rotation). Some particle trajectories 

possess negative energy relative to infinity. Due to the symmetry breaking of SU(11), we get mainly two 

fragments as SU(6) and SU(5), one of which i.e. particles of the energy group SU(6) is placed on one of these 

negative energy paths, and this part changes to SU(5), so reduce the total mass M of the hole somewhat and 

hence the mass-energy of SU(5) thereby released by this sacrificed particles of the latent energy group SU(6) 

which is ejected to infinity at high speed. During this energy transfer the black-hole‟s rotation rate is diminished 

somewhat, so J also decreases. Thus from equation (83), which shows that when J decreases, the area A 

increases, but when M decreases, the area decreases. The change in M and J are therefore in competition, but a 

careful calculation shows that J always wins and the area increases. 

Actually, if the class of all trajectories is studied, it is found that in general the area increases by an amount 

corresponding to a considerable fraction of mass energy. However, the efficiency of energy extraction can be 

improved by approaching closely to a limiting class of trajectories for which the event horizon area remains 

constant. The limiting case is therefore reversible and corresponds to an isentropic change in thermodynamics. 

In practice, 100% efficiency (complete reversibility) would be impossible. 

This strong analogy between event horizon area and entropy led to use of the name „second law‟ in connection 

with Hawking‟s area theorem, which is therefore written as:  

                                         dA  ≥ 0,    [equality corresponding to reversibility]                                    (84) 

There are also analogous of the Zeroth, first and third laws of thermodynamics. From (82), we can obtain;            

                                                                                                                            (85) 

Where          
  

  
  ,etc. which is really just an expression of mass-energy conservation and corresponds to 

the first law. If A plays the role of entropy then we see from (85), that k plays the role of temperature 

             The interesting thing is that k can be shown to be constant across the event horizon surface. We 

thus have an expression of a „Zeroth‟ law, analogous to the thermodynamic one of which says that in 

thermodynamic equilibrium there exists a common temperature parameter for the whole system. The quantity k 

is known as the surface gravity of the black-hole. Its significance lies in the fact that it determines the e-folding 

time which controls the rate at which the collapsing star red-shifts and approaches equilibrium. For a 

Schwarzschild hole          and the constant 8  in (85) has been chosen to agree with this. The remaining 

terms in (85) simply describe the work done (energy extracted) from changes in angular momentum       and 

electric charge   de) and have a very obvious structure: Ω is the (magnitude of) angular velocity and 𝛟 the 

electric potential at the event horizon. 

Finally, there is the third law. It is straightforward to show that if J² or e² become large enough such that: 

          
  

   
  

         i.e.          (
  

 
  )     

  

 
                                                                 (86) 

then k vanishes (although A does not). This corresponds to absolute zero (though with finite entropy). A black-

hole with parameters given by (86) is known as an extreme Kerr-Newman black-hole. It is the limiting case of 

an object which still possesses an event horizon. Should the left-hand side become even infinitesimally greater 

than one, then the horizon would disappear and we would left with a naked singularity, i.e. the singularity would 

no longer be invisible inside a black-hole but would be able to influence, and be observed by, the outside 

universe. This circumstance is considered so undesirable for physics that most physicists believe in the so-called 

cosmic censorship hypothesis due to Penrose (1969): naked singularities cannot form from gravitational 

collapse. Cosmic censorship implies the un-attainability of „absolute zero‟, k = 0 [i.e. condition (86) for an 

extreme black-hole], so it plays the role of the third law.  

 

XIII.   The conceptual Foundations of Thermo-statistics: 
Thermo-statistics characterizes the equilibrium state of microscopic system without reference either to 

the specific forces or to the laws of mechanical response. Instead thermo-statistics characterizes the equilibrium 

state as the state that maximizes the disorder, a quantity associated with a conceptual framework (“Information 



The Complex Quantum-State Of Black-Hole And Thermostatistics. 

www.iosrjournals.org                                                             15 | Page 

Theory”) outside of conventional physical theory. The question arises as to whether the postulatory basis of 

thermo-statistics thereby introduces new principles not contained in mechanics, electromagnetism, and the like 

or whether it borrows principles in unrecognized form from that standard body of physical theory. In either case, 

what are the implicit principles upon which thermo-statistics rests? 

               There are, in my view, two essential basis underlying thermo-statistical theory. One rooted in the 

statistical properties of large complex systems. The second rests in the set of symmetries of the fundamental 

laws of physics. The statistical feature veils the incoherent complexity of the atomic dynamics, thereby 

revealing the coherent effects of the underlying physical symmetries. The relevance of the statistical properties 

of large complex systems is universally accepted and reasonable evident. The essential property is epitomized in 

the “central limit theorem”. Which states (roughly) that the probability density of a variable assumes the 

“Gaussian” form if the variable is itself the resultant of a large number of independent additive sub-variables. 

Although one might naively hope that measurements of thermo-dynamic fluctuation amplitudes could yield 

detailed information as to the atomic structure of a system, the central limit theorem precludes such a possibility. 

It is this insensitivity to specific structural or mechanical detail that underlies the universality and simplicity of 

thermo-statistics. 

 

XIII.   Energy Conservation Principle: 
The development of the principle of conservation of energy has been one of the most significant 

achievements in the evolution of physics. The first recognition of a conservation principle, by Leibniz in 1693 

when Leibniz observed that  
 

 
         is a conserved quantity for a mass particle in the earth‟s gravitational 

field. As successively more complex systems were studied it was found that additional terms had to be appended 

to maintain a conservation principle, but that in each case such an ad- hoc addition was possible. The 

development of electro-magnetic theory introduced the potential energy of the interaction of electric charges, 

subsequently to be augmented by the electromagnetic field energy. In 1905 Albert Einstein was inspired to alter 

the expression for the mechanical kinetic energy, and even to associate energy with stationary mass, in order to 

maintain the principle of energy conservation. In the 1930 Enrico Fermi postulated the existence of the neutrino 

solely for the purpose of retaining the energy conservation law in nuclear reaction. And so the process 

continues, successively accreting additional terms to the abstract concept of energy, which is defined by its 

conservation law. That conservation law was evolved historically by a long series of successive rediscoveries. It 

was now based on the assumption of a symmetry of the new type of energy source SU(6) by the time translation 

system              . It was discussed elaborately in my papers (NK Bhadra; The Complex Model of the 

Universe; IOSR-JM; 2, 4, pp-41), where we consider that our universe actually started from 10-dimensional 

space-time instead of 4-dimensional Einstein‟s universe with the symmetry breaking of the special unitary group 

SU(11) from 7-dimensional flat space-time, there exists two types of energy sources of the Gaussian energy 

group SU(6) and SU(5), i.e. it was considered SU(6), a new type of energy source called latent energy group, so 

the conservation law of energy maintain due to the addition of SU(6) with SU(5). Hence the space time is 

actually shifted as     . So it is conventional therefore to adopt some particular state of a system as a fiducial 

state, the energy of which [i.e. SU(11)] is arbitrarily taken as zero. The energy of a system in any other state, 

relative to the energy of the system in the fiducial state, is then called the thermodynamic internal energy of the 

system in that state and is denoted by the symbol U. So for thermodynamic equilibrium there exists particular 

states of simple system that, macroscopically, are characterized completely by internal energy U, the volume V, 

and the mole numbers                   of the chemical components. 

A physical consequence of symmetry is formulated in “Noethers‟s theorem”. The theorem asserts that every 

continuous  symmetry of the dynamical behavior of a system (i.e. of the dynamical equation and the mechanical 

potential) implies a conservation law for that system. 

The dynamical equation for the motion of the centre of mass point of any material system is Newton‟s 

law. If the external force does not depend upon the co-ordinate x, then both the potential and the dynamical 

equation are symmetric under spatial translation parallel to the x-axis. The quantity that is conserved as a 

consequence of this symmetry is the x-component of the momentum. Similarly the symmetry under translation 

along the y or z axes results in the conservation of the y or z components of the momentum. Symmetry under 

rotation around the z-axis implies conservation of the z-component of the angular momentum. 

Of enormous significance for thermo-statistics is the symmetry of dynamical laws under time translation. That 

is, the fundamental dynamical laws of physics (such as Newton‟s law, Maxwell‟s equations, and Schr ̈dinger‟s 

equation) are unchanged by the transformation         (i.e., by a shift of the origin of the scale of time). If 

the external potential is independent of time, Noether‟s theorem predicts the existence of a conserved quantity. 

That conserved quantity is called the energy. The evolution of the energy concept for macroscopic 

thermodynamic systems was even more difficult. The pioneers of the subject were guided neither by a general a 

priori conservation theorem nor by any specific analytic formula for the energy. Even empiricism was thwarted 

by the absence of a method of direct measurement of heat transfer. Only inspired in-sight guided by faith in the 
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simplicity of nature somehow revealed the interplay of the concepts of energy and entropy, even in the absence 

of a priori definitions or of a means of measuring either.  

 

XIV.    The Generalized “First law” of thermodynamics: 
In accepting the existence of a conserved macroscopic energy function as the first postulate of 

thermodynamics, we anchor that postulate directly in Noether‟s theorem and the time-translation symmetry of 

physical laws. There are seven “first integrals of the motion”(as the conserved quantities are known in 

mechanics). These seven conserved quantities, all arises as Lagrange parameters and they play completely 

symmetric roles in the theory are the energy, the three components of linear momentums and the three 

components of the angular momentum; and they follow in parallel fashion from the translation in “space-time” 

and from rotation. In fact, the energy is not unique in thermo-statistics. The linear momentum and angular 

momentum play precisely parallel roles. The asymmetry in our account of thermo-statistics is a purely 

conventional one that obscures the true nature of the subject. The proper “the first law of thermo-dynamics”,(or 

the first postulate in our formulation) is the symmetry of the laws of physics under space-time translation and 

rotation, and consequent existence of conserved energy, momentum, and angular momentum functions 

. 

XV.    Goldstone‟s Theorem with Symmetry Breaking: 
The concept of broken symmetry is clarified by reflecting on the process by which a crystal may be 

formed. Suppose the crystal to be solid carbon-dioxide (“dry ice”), and suppose the carbon-dioxide initially to 

be in the gaseous state, contained in some relatively large vessel (“infinite in size”). The gas is slowly cooled. At 

the temperature of the gas-solid phase transition a crystalline nucleus forms at some point in the gas (which may 

compared with the very early stages of the universe). The nucleus thereafter grows until the gas pressure falls to 

that on the gas-solid coexistence curve (i.e., to the vapor pressure of the solid). From the point of view of 

symmetry the condensation is a quite remarkable development. In the “infinite” gas the system of the universe is 

symmetric under a continuous translation until the energy group SU(11) of U(11), but the condensed solid (as 

our universe) has a lower symmetry! It is invariant only under a discrete translation group. Furthermore the 

location of the crystal is arbitrary, determine by the accident of the first microscopic nucleation. In that 

nucleation process the symmetry of the system suddenly and spontaneously lowers, and it does so by a non-

predictable, random event. The symmetry of the system is “broken”.  

Macroscopic sciences, such as solid state physics or thermodynamics, are qualitatively different form 

“microscopic” sciences because of the effects of broken symmetry, as was pointed out by P.W. Anderson in an 

early but profound and easily readable essay. 

At sufficiently high temperature systems always exhibit the full symmetry of the “mechanical 

potential” (i.e., of the Lagrangian or Hamiltonian functions). There do exist permissible micro-states with lower 

symmetry, but these states are grouped in sets which collectively [for example, SU(11)] exhibit the full 

symmetry. Thus the microstates of a gas do include states with crystal-like spacing of the molecules- in fact, 

among the microstates all manner of different crystal-like spacing are represented, so that collectively the states 

of the gas retain no overall crystallinity whatever. However, as the temperature of the gas is lowered the 

molecules select that particular crystalline spacing of lowest energy, and the gas condenses into the 

corresponding crystal structure. This is a partial breaking of the symmetry. Even among the microstates with 

this crystalline periodicity there are a continuum of possibilities available to the system, for the incipient crystal 

could crystallize with any arbitrary position. Given one possible crystal position there exist infinitely many 

equally possible positions, slightly displaced by an arbitrary function of a “lattice constant”. Among these 

possibilities, all of equal energy, the system chooses one position (i.e., a nucleation center for the condensing 

crystallite) arbitrarily and “accidentally”. An important general consequence of broken symmetry is formulated 

in the Goldstone theorem. It asserts that any system with broken symmetry (and with certain weak restrictions 

on the atomic interactions) has a spectrum of excitations for which the frequency approaches zero as the wave 

length becomes infinitely large. 

So for the crystal discussed here the Goldstone theorem ensures that a phonon excitation spectrum 

exists, and that its frequency vanishes in the long wave length limit.  

In summary, then, the volume emerges as a thermodynamic co-ordinate by virtue of a fundamental symmetry 

principle grounded in the concept of broken symmetry and in Goldstone‟s theorem. 

 

XVI.   Heat Flux in the Early Universe: 
We have discussed that the adiabatic assumption were violated in the stage when the universe was from 

10-dimensional to 7-dimensional space-time and then from 7-dimensional to 4-dimensional adiabatic stage 

arises and then a symmetry breaking of the special unitary group SU(11), we get mainly two sub-energy groups 

SU(6) and SU(5), where it is possible to change equal number of energy particles (30-number of bosons, which 

is constant) from the group SU(6) to SU(5) or vice-versa and another energy group U(1). 
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We now enquire about the possibility of starting with two arbitrary given state of a system, of 

enclosing the system in an adiabatic impermeable wall, and of then being able to contrive some mechanical 

process that will take the system to another arbitrarily specified state. To determine the existence of such 

processes, we must have recourse to experimental observation, and it is here that the great classical experiments 

of Joule are relevant. His work can be interpreted as demonstrating that for system enclosed by an adiabatic 

impermeable wall any two equilibrium states with the same set of mole numbers               can be 

joined by some possible mechanical process. Joule discovered that if two states (say A and B) are specified it 

may not be possible to find a mechanical process (consistent with an adiabatic impermeable wall) to take the 

system from A to B but that it is always possible to find either a process to take the system from A to B or a 

process to take the system from B to A. this is for any states A and B with equal mole numbers, either the 

adiabatic mechanical process          exists. For out purposes either of these processes is satisfactory. 

Experiment thus shows that the methods of mechanics permit us to measure the energy difference of any two 

states with equal mole numbers. 

In summary, we have seen that by employing adiabatic walls and by measuring only mechanical work, 

the energy of any thermodynamic system, relative to an appropriate reference state, can be measured.  

The fact that the energy difference of any two equilibrium states is measurable as – The heat flux to a system in 

any process (at constant mole numbers) is simply the difference in internal energy between the final and initial 

states, diminished by the work done in that process.  

It should be noted that the amount of work associated with different processes initiates in the same state 

A and each terminates in the same state B. similarly, the heat flux may be different for each of the processes. 

But the sum of the work and heat fluxes is just the total energy difference       and is the same for each of 

the processes. In referring to the total energy flux we therefore need specify only the initial and terminal states, 

but in referring to heat or work fluxes we must specify in-detail the process considered. 

Restricting our attention to thermodynamic simple systems, the quasi-static work is associated with a change in 

volume and is given quantitatively by 

                                                                                                                                                 (87) 

Where P is the pressure.  Hence for the quasi-static work, we can now give a quantitative expression for the heat 

flux. In an infinitesimal quasi-static process at constant mole numbers the quasi-static heat dQ is defined by the 

equation, 

                               [at constant mole numbers]      i.e.,                                     (88) 

It will be noted that we use the terms heat and heat-flux interchangeable. Heat, like work, is only a form of 

energy transfer. Once energy is transferred to a system, either as heat or as work, it is indistinguishable from 

energy that might have been transferred differently. Thus, although            add together to give dU, the 

energy U of a state cannot be considered, as the sum of “work” and “heat” components. To avoid this 

implication we put a strokes through the symbol d: infinitesimals such as     and dQ are called imperfect 

differentials. The integrals of     and dQ for a particular process are the work and heat fluxes in that process; 

the sum is the energy difference ΔU, which alone is independent of the process. 

The whole system of the very early universe may be compared with the concepts of heat, work, and energy 

which may possibly be clarified in-terms of a simple analogy. A certain farmer owns a pond, fed by one stream 

and drained by another. The pond also receives water from an occasional rainfall and loses it by evaporation, 

which we shall consider as “negative rain”. In this analogy the pond is our system, the water within it is the 

internal energy, water transferred by the streams is work, and water transferred as rain is heat. 

The first thing to be noted is that no examination of the pond at any time can indicate how much of the water 

within it came by way of the stream and how much came by way of rain. The term rain refers only to a method 

of water transfer. 

Let us suppose that the owner of the pond wishes to measure the amount of water in the pond. He can 

purchase flow meters to be inserted in the streams, and with these flow meters he can measure the amount of 

stream water entering and leaving the pond. But he cannot purchase rain meter. However, he can throw a 

tarpaulin over the pond, enclosing the pond in a wall impermeable to rain (an adiabatic wall). The pond owner 

consequently puts a vertical pole into the pond, covers the pond with his tarpaulin, and inserts his flow meters 

into the streams. By damming one stream and then the other, he varies the level in the pond at will, and by 

consulting his flow meters he is able to calibrate the pond level, as read on his vertical stick, with total water 

content (U). Thus, by carrying out processes on the system enclosed by an adiabatic wall, he is able to measure 

the total water content of any state of his pond. 

Our, obliging pond owner now removes his tarpaulin to permit rain as well as stream water to enter and 

leave the pond. He is then asked to evaluate the amount of rain entering his pond during a particular day. He 

proceeds simply: he reads the difference in water content from his vertical stick, and from this he deducts the 

total flux of stream water as registered by his flow meters. The difference is a quantitative measure of the rain. 

The strict analogy of each of these procedures with its thermo-dynamic counterpart is evident.   
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                                                                   XVII.   Concluding Remarks:    
We study with quantum black-hole. We discussed three stages of a black-hole. In the first stage, when 

the universe was from 10-dimensional super-gravity with flat space-time up-to 7-dimensional and then from 7-

dimensional to 4-dimensional closed black-hole stage, after then 4-dimensional Einstein universe. In my paper it 

is considered that a symmetry breaking occurred from 7-dimensional universe. We consider a new type of 

Gaussian energy group SU(6) called latent group and take a single frame-work of the super unified theory, 

SU(11), a special unitary group of       , Hermitian matrices of zero trace, whose sub-sets are as follows 

                          where                       , all energy groups SU(3), SU(2) 

& U(1) are as usual which was explained in this paper. It was seen from the equations (81) and (86) that the 

Schwarzschild mass „M‟ and the angular momentum „J‟ of the black-hole depends upon the numbers of charge 

particles „e‟. We consider the energy group U(1), are responsible for making the electric charge „e‟ and hence 

for charged black-hole. The energy group SU(6) are responsible for strong gravitation field within the black-

hole. Also it was shown that 30-number of bosons of SU(6) are changed into 30-number of bosons of SU(5) and 

vice-versa of the SUT, hence our matter universe (Einstein universe) is emerged from so called black-hole 

(primordial black-hole) and then everything and also will be destroyed within the black-hole after a long 

journey. 

Every systematic part of the matter universe (i.e., matter energy) controlled by the energy group SU(6) 

of the black-hole (i.e., latent energy) which is remaining at the centre region primarily. Addition of the part of 

the matter universe is controlled by the combined black-hole energy. An analogy will illustrate the scenarios of 

the formation of the so-called black-holes as like as the formation of rain drops from the collecting water vapor 

from the mixed air in the earth. The black-hole formed in the so-called vapor phase of energy was explained 

before.  

Again, it was shown by considering the line element of the Kantowski-sachs universe, the outer surface 

   corresponds to the event horizon i.e.              This surface has global significance. The inner 

surface    is another type of horizon inside the hole itself. 

We found that in the flatness problem we lead to fine tuning while for the horizon problem it gave an extremely 

small size of homogeneity. It therefore appears that the trouble of black-hole lies between10-dimensional to 7-

dimensional flat universe and could be resolved as the adiabatic assumption were violated at this stage. As we 

consider the universe started from 10-dimensional space-time, so the origin of time shifted at     . We 

showed the conservation principle of energy, by considering the fiducial state of energy as SU(11) is arbitrarily 

taken as zero. 

It is shown that the conservation law of energy is maintained by introducing internal energy at the 

beginning of our universe by considering the fiducial state of system, where the energy of which is arbitrarily 

taken as zero, and hence in the C-field, it is possible to increase the matter-mass of our 4-dimensional universe. 

The energy difference of any two equilibrium states is measurable as: The heat-flux to a system in any process 

(at constant mole numbers) is simply the difference in internal energy between the final and initial states, 

diminished by the work done in that process. 

 

Acknowledgement: 
The author is thankful to Prof. Subenoy Chakraborty, Department of Mathematics, Jadavpur 

University, Kolkata, West Bengal, India, for his helpful discussions. 

 

References: 
[1]. Hawking S.W(1984): The quantum state of the universe, Nucl. Phys. B239.257. 

[2]. Hoyle F. and Naralikar J.V(1964): A new theory of gravitation. Proc. R. Soc., A282.191. 

[3]. Bhadra N.K(2012):The complex Model of the Universe, IOSR-JM, ISSN: 2278-5728, vol.2, 4, pp-20; and The complex model of the  
quantum universe,vol.4, 1, pp-20. 

[4]. Einstein, A. de-Sitter, W. (1932): On the relation between the expansion and mean density of the universe. Proc. Natl. Acad. 

Sci.,(USA), 18,213. 

[5]. Davies, P.C.W. (1974): The Physics of Time Asymmetry(Surrey University Press/ University of California Press) – 1976a Proc. R. 

Soc. A.  351  139; -1976b Nature 263  377; -1977a Proc. R. Soc. A. 353  499; -1977b Space and Time in the Modern University 

(Cambridge : Cambridge University Press). 
[6]. Mendeez, V. and Pavon, D.(1996): Gen. Rel. Grav., 28. 697; Birrell N. D and Davies, P.C.W 1978  Nature 272  35 

[7]. Bekenstein, J.D.1973 Phys. Rev. D. 72333; Bertin, G., and Radicati, L.A 1976 Astrophys.206  825;. 

[8]. Candelas P., and Seiama, D.W. 1977 Phys. Rev. Lett. 38  1372; Carr, B. 1977 Mon, Not. R. Astrom. Soc. 181  293; Carter B 1973 
Black-Holes ed DeWitt and DeWitt (London: Gordon and Breach) Casimir HBG 1948 Proc. Kon. Ned. Akad. Wetens chap. 51 793. 

[9]. Christensen, S.M. and Fulling, S.A.  1977 Phys. Rev. D15 2088;Einstein Albert (1987): Ideas and Opinions, Crown Publishers, New 

York, pp-348. 
[10]. Halliwel, J.J. Hawking, S.W., (1985): The Origin of Structure in the Universe, Phys. Rev. D 31 1777. Hawking, S.W.(1985): The 

Arrow of Time in Cosmology Phys. Rev., D 32 2489. 1. 

[11]. Hawking, S.W. and Ellis GFR 1973, The Large Scale Structure of Space-Time (Cambridge: Cambridge University Press). 
[12]. Guth, Alan. H.(1997): The inflationary Universe, Addision-Wesley Co., Inc. Reading, Massachusetts.  



The Complex Quantum-State Of Black-Hole And Thermostatistics. 

www.iosrjournals.org                                                             19 | Page 

[13]. Guth, A. and Steinhardt. Paul(1992): The inflationary Universe and article in The New Physics edited by Paul Davies (Cambridge 

university Press). Pp-55. Smarr L 1973 Phys. Rev. Lett. 30 71. 
[14].  Appelquist, T., Chodos, A. and Freund, P.G.O (1986): Modern Kaluza-Klein Theories, Frontiers in Physics in series Vol. 65, (Ed. 

Adison-Wesley). A.G. Riess et al, Astrophys ., 560,49(2001). 

[15]. Abdul Rahaman, A.M.M.(1992): Phys.Rev. D 45, 3497; Abbott, L.F. (1985): Phys. Lett. 150B, 427. Giddings, S.B. and Strominer, 
A. (1988-89): Nucl. Phys., B 307, 854 B 321, 481(1989). 

[16]. Emmy Noether, Gesammette Abhandlungen, (Collected Papers), Springer-Verlag, Berlin-New-York, 1983. 

[17]. Wigner, E. „Symmetry and Conservation Laws‟, Physics Today, March 1964 P.34. Anderson, P.W., pp 175-182 in concepts in solids 
(W.A. Benjamin Inc., New-York, 1964). 

[18]. Parratt, L.G., Probability and Experimental Errors in Science, Wiley, New-York, 1961 and Parzen, E., Modern Probability Theory 

and Its Application , Wiley, New-York, 1960. 
[19]. C. Huang, Statistical Mechanics, Wiley, 1963. Classic graduate text. ; R.J.Finkelstein, Thermodynamics and Statistical Physics-A 

Short Introduction, W. H. Freeman and Co., 1969. 

[20]. M. Tribus, Thermostatics and Thermodynamics, Van Nostrand, 1961. ; P. T. Landsburg, Thermodynamics and Statistical Mechanics, 
Oxford University Press, 1978. ;  

[21]. P.W. Anderson, Basic Notions of Condensed Matter Physics, Benjamin/Cummings, 1984. ; J. W. Gibbs, The Scientific Papers of J. 

Willard Gibbs, Volume I, Thermodynamics, Dover, 1961. 
[22]. Herbert.B. Callen, Books, General Principles of Classical Thermodynamics. Philadelphia, Pennsylvania. 

 

 

 

 

 

 

 

 


