Integral points on the homogeneous cone

\[z^2 = 3x^2 + 6y^2 \]

M. A. Gopalan\(^1\), B. Sivakami\(^2\)

\(^1\) (Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirapalli-620002, Tamilnadu, India)
\(^2\) (Department of Mathematics, Chettinad College of Engineering and Technology, Karur-639114, Tamilnadu, India)

Abstract: The homogeneous cone represented by the ternary quadratic equation \(z^2 = 3x^2 + 6y^2 \) is analysed for its non-zero integral solutions. Five different patterns of solutions are illustrated. In each pattern, interesting relations among the solutions and some special polygonal and pyramidal numbers are exhibited.

Keywords: Homogeneous cone, Integral solutions, Polygonal numbers, Pyramidal numbers, Ternary quadratic.

I. Introduction

The ternary quadratic Diophantine equations offer an unlimited field for research by reason of variety[1-2]. For an extensive review of various problems one may search refer [3-15]. This communication concerns with yet another interesting ternary quadratic equation representing a homogeneous cone for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions and some special polygonal and pyramidal numbers are presented. Further three different general forms for generating sequence of integral points based on the given point on the considered cone are exhibited.

II. Notations

<table>
<thead>
<tr>
<th>Polygonal Numbers</th>
<th>Notations for rank ('n')</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular number</td>
<td>(T_n)</td>
<td>(\frac{1}{2} n (n + 1))</td>
</tr>
<tr>
<td>Pentagonal number</td>
<td>(\text{Pen}_n)</td>
<td>(\frac{1}{2} (3n^2 - n))</td>
</tr>
<tr>
<td>Hexagonal number</td>
<td>(\text{Hex}_n)</td>
<td>(2n^2 - n)</td>
</tr>
<tr>
<td>Octagonal number</td>
<td>(\text{Oct}_n)</td>
<td>(3n^2 - 2n)</td>
</tr>
<tr>
<td>Nanogonal number</td>
<td>(\text{Nan}_n)</td>
<td>(\frac{1}{2} (7n^2 - 5n))</td>
</tr>
<tr>
<td>Decagonal number</td>
<td>(\text{Dec}_n)</td>
<td>(4n^2 - 3n)</td>
</tr>
<tr>
<td>Hendecagonal number</td>
<td>(\text{HD}_n)</td>
<td>(\frac{1}{2} (9n^2 - 7n))</td>
</tr>
<tr>
<td>Dodecagonal number</td>
<td>(\text{DD}_n)</td>
<td>(\frac{1}{2} (10n^2 - 8n))</td>
</tr>
<tr>
<td>Tridecagonal number</td>
<td>(\text{TD}_n)</td>
<td>(\frac{1}{2} (11n^2 - 9n))</td>
</tr>
<tr>
<td>Tetradecagonal number</td>
<td>(\text{TED}_n)</td>
<td>(\frac{1}{2} (12n^2 - 10n))</td>
</tr>
<tr>
<td>Octadecagonal number</td>
<td>(\text{OD}_n)</td>
<td>(\frac{1}{2} (16n^2 - 14n))</td>
</tr>
<tr>
<td>Icosagonal number</td>
<td>(\text{IC}_n)</td>
<td>(\frac{1}{2} (18n^2 - 16n))</td>
</tr>
<tr>
<td>Centered Square number</td>
<td>(\text{CS}_n)</td>
<td>(n^2 + (n - 1)^2)</td>
</tr>
</tbody>
</table>
Integral points on the homogeneous cone \(z^2 = 3x^2 + 6y^2 \)

<table>
<thead>
<tr>
<th>Centered hexagonal number</th>
<th>CH(_n)</th>
<th>3(n^2 - 3n + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gnomonic number</td>
<td>Gno(_n)</td>
<td>2(n - 1)</td>
</tr>
<tr>
<td>Pronic number</td>
<td>Pro(_n)</td>
<td>(n(n + 1))</td>
</tr>
<tr>
<td>Stella Octangula number</td>
<td>SO(_n)</td>
<td>(n(2n^2 - 1))</td>
</tr>
<tr>
<td>Star number</td>
<td>Star(_n)</td>
<td>6(n(n - 1) + 1)</td>
</tr>
<tr>
<td>Pentagonal Pyramidal number</td>
<td>PP(_n)</td>
<td>(\frac{1}{2}n^2(n + 1))</td>
</tr>
<tr>
<td>Hexagonal Pyramidal number</td>
<td>HXP(_n)</td>
<td>(\frac{1}{6}n(n + 1)(4n - 1))</td>
</tr>
<tr>
<td>Tetrahedral number</td>
<td>Tetra(_n)</td>
<td>(\frac{1}{6}n(n + 1)(n + 2))</td>
</tr>
<tr>
<td>Pentatope number</td>
<td>PT(_n)</td>
<td>(\frac{1}{24}n(n + 1)(n + 2)(n + 3))</td>
</tr>
</tbody>
</table>

III. Method Of Analysis

The equation under consideration to be solved is \(z^2 = 3x^2 + 6y^2 \) \(\ldots\)\((1) \)

Five different patterns to \((1) \) are illustrated below:

1. **Pattern 1:**
 By applying the transformation \(x = X + 6T, y = X - 3T, z = 3W \)
 \(\ldots\)\((2) \)
 equation \((1) \) reduces to \(W^2 = X^2 + 18T^2 \)
 \(\ldots\)\((3) \)
 which is satisfied by \(T = 2rs, X = 18r^2 - s^2, W = 18r^2 + s^2 \)
The thus in view of \((2) \), the non-zero distinct integral points on the homogeneous cone \((1) \) are given by
 \(x(r, s) = 18r^2 + 12rs - s^2 \)
 \(y(r, s) = 18r^2 - 6rs - s^2 \)
 \(z(r, s) = 54r^2 + 3s^2 \)

1.1 **Properties:**
1. Each of the following represents a Nasty number:
 (i) \(x(r, 1) + 2y(r, 1) + 3 \)
 (ii) \(z(r, 1) - 3 \)
 (iii) \(z(r, s) - x(r, s) - 2y(r, s) \)

2. Each one of the following is a perfect square:
 (i) \(3x(r, s) + 6y(r, s) + 3z(r, s) \)
 (ii) \(12x(1, s) + 6y(1, s) + 3StarS - 120T_S + 30Hex_S - 3 \)
3. \(3x(r, 1) - z(r, 1) - 18Gno_r = 0 \text{mod}(12) \)
4. \(x(1, s) + Dec_S - Oct_S - 18 = 0 \text{mod}(11) \)
5. \(y(1, s) + Pro_S - 18 = 0 \text{mod}(5) \)
6. \(x(r, 1) - 36T_r + 3Gno_r + 4 = 0 \)
7. \(y(r, 1) - 6[TED_r - DD_r + CS_r + Gno_r] + 1 = 0 \)
8. \(2z(1, s) - 3[TED_S - DD_S + Pro_S] - 108 = 0 \)

II. Pattern 2:
Consider \((3) \) as \(X^2 + 18T^2 = W^2 \cdot 1 \) \(\ldots\)\((4) \)
Integral points on the homogeneous cone \(z^2 = 3x^2 + 6y^2 \)

Let \(W = a^2 + 18b^2 \) and write \(1 \) as \(\frac{(1+i2\sqrt{2})(1-i2\sqrt{2})}{9} \)

Then \((a + i3\sqrt{2}b)^2 = (a + i3\sqrt{2}b)^2 \frac{(1+i2\sqrt{2})(1-i2\sqrt{2})}{9} \)

Let us define \(X = (a + i3\sqrt{2}b)^2 \frac{(1+i2\sqrt{2})}{3} \)

By equating the real and imaginary parts on both sides, we get
\[
X = \frac{1}{3} (a^2 - 24ab - 18b^2) \quad \text{and} \quad T = \frac{1}{9} (2a^2 + 6ab - 36b^2)
\]

Using these values of \(X \) and \(T \) the values of \(x, y \) and \(z \) are obtained as
\[
x = \frac{1}{3} (5a^2 - 12ab - 90b^2) \\
y = \frac{1}{3} (-a^2 - 30ab + 18b^2) \\
z = 3a^2 + 54b^2
\]

Since our aim is to get integral values, we may choose \(a = 3A \) and \(b = 3B \)

Then the solutions of (1) are given by
\[
x(A, B) = 15A^2 - 36AB - 270B^2 \\
y(A, B) = -3A^2 - 90AB + 54B^2 \\
z(A, B) = 27A^2 + 486B^2
\]

2.1 Properties:
1. Each of the following represents a perfect square:
 (i) \(3[x(A, A) + z(A, A)] + 15y(A, A) \)
 (ii) \(-3y(A, 1) - 135Gino_A + 27 \)

2. \(y(A, 1) + z(A, 1) - x(A, 1) - 3Oct_A + 24Gino_A - 786 = 0 \)
3. \(z(A, 1) - y(A, 1) - 60Pr_o_A + 15CS_A = 0 \) (mod 477)
4. \(x(A, 1) + 5y(A, 1) = 54DD_A - 540T_A \)
5. Each one of the following represents a Nasty number:
 (i) \(x(A, 1) + z(A, 1) - 12Nan_A + 12Hex_A - 6Dec_A \)
 (ii) \(2z(A, 1) - 972 \)
6. \(x(A, 1) - 6(OD_A) + 6TD_A + 42HD_A - 21IC_A = 0 \) (mod 270)
7. \(5DD_x - 4TED_x = 2T_x + Hex_x + 18Oct_y - 12Dec_y \)
8. \(\left(\frac{PP_x}{T_x} \right)^2 = 3 \left(\frac{4PT_x}{Teta_x} - 3 \right)^2 + 6 \left(\frac{6Teta_y}{Pr_o_y} - 2 \right)^2 \)

III. Pattern 3:

Taking the transformations \(x = 2u + 1, y = u - 1, z = 3v \)

equation (1) is reduced to \(v^2 = 2u^2 + 1 \)

whose general solution is \(v^2 = \frac{f}{2}, u^2 = \frac{g}{2\sqrt{2}} \)

Here \(f = (3 + 2\sqrt{2})x^8 + (3 - 2\sqrt{2})y^8 + 1 \)
Integral points on the homogeneous cone \(z^2 = 3x^2 + 6y^2 \)

\[g = (3 + 2\sqrt{2})^{s+1} - (3 - 2\sqrt{2})^{s+1} \]

From these values of \(g_s, u_s \), the solutions of (1) are given by

\[x_s = \frac{g}{2\sqrt{2}} + 1, y_s = \frac{g}{2\sqrt{2}} - 1, z_s = \frac{3f}{2} \]

The recurrence relations for the solutions are

\[x_s + 2 - 6x_{s+1} + x_s = -4 \]
\[y_s + 2 - 6y_{s+1} + y_s = 4 \]
\[z_s + 2 - 6z_{s+1} + z_s = 0 \quad s = 0, 1, 2, 3, \ldots \]

Using the above recurrence relations, few integral solutions for (1) are presented as follows:

<table>
<thead>
<tr>
<th>s</th>
<th>(x_s)</th>
<th>(y_s)</th>
<th>(z_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>11</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>141</td>
<td>69</td>
<td>297</td>
</tr>
<tr>
<td>3</td>
<td>817</td>
<td>407</td>
<td>1731</td>
</tr>
<tr>
<td>4</td>
<td>4757</td>
<td>2377</td>
<td>10089</td>
</tr>
<tr>
<td>5</td>
<td>27721</td>
<td>13859</td>
<td>58803</td>
</tr>
<tr>
<td>6</td>
<td>161565</td>
<td>80781</td>
<td>342729</td>
</tr>
</tbody>
</table>

3.1 Properties:
1. \(x_s - 2y_s = 0 \mod 3 \)
2. \(x_s + 2 - 12y_{s+1} + x_s = 0 \mod 14 \)
3. \(63x_{s+1} - 378y_s - 84z_s \) is a perfect square.
4. \(6z_{s+2} - 216x_s - 102z_s + 216 = 0 \)
5. \(2z_{s+1} - 24y_s \) is a nasty number.
6. \(2z_{s+1} - 4x_{s+1} - y_{s+1} + 3y_{s+1} = 0 \mod 6 \)
7. \((x_s - 1)(y_s + 1) \) is a perfect square.

IV. Pattern 4:

Equation (1) can be rewritten as \(z^2 - 6y^2 = 3x^2 \) …….(6)

Let \(x = a^2 - 6b^2 \) and \(3 = (3 + \sqrt{6})(3 - \sqrt{6}) \)

Then (6) \(\Rightarrow (z + \sqrt{6}y)(z - \sqrt{6}y) = (3 + \sqrt{6})(3 - \sqrt{6})[(a + \sqrt{6})(a - \sqrt{6})]^2 \)

Define \(z + \sqrt{6}y = (3 + \sqrt{6})(a + \sqrt{6}b)^2 \)

By equating the real and imaginary parts, the values of \(y \) and \(z \) are

\[y = a^2 + 6ab + 6b^2 \]
\[z = 3a^2 + 12ab + 18b^2 \]

Then the solutions of (1) are represented by \(x(a, b) = a^2 - 6b^2 \)

\[y(a, b) = a^2 + 6ab + 6b^2 \]
\[z(a, b) = 3a^2 + 12ab + 18b^2 \]

4.1 Properties:
1. Each of the following is a perfect square:
 (i) \(x(a, 1) + 6 \) is a perfect square.
 (ii) \(z(a, 1) - 3x(a, 1) - 6Pr_0a + 3CSa - 3 \)
2. \(y(a, 1) - 2T_a - 6 = 0 \mod 5 \)
Integral points on the homogeneous cone $z^2 = 3x^2 + 6y^2$

3. $2z(a,1) - 3Pr_0a - CH_a - 12Gno_a - 47 = 0$

4. $z(a,1) - 2y(a,1) - x(a,1) = 0(\text{mod } 12)$

5. $4x(a,1) - \frac{3HXP \cdot 2}{T \cdot a^2} + 23 = 0$

6. $6z(a,1) - 12y(a,1) - 36$ is a Nasty number.

7. $7x(a,1) - y(a,1) - Str_a + 49 = 0$

8. $6x(a,1) - CH_a - 6T_a = 0(\text{mod } 37)$

V. Pattern 5:

Equation (1) can also be written as $z^2 - 3x^2 = 6y^2$

Let $y = a^2 - 3b^2$ and $6 = (3 + \sqrt{3})(3 - \sqrt{3})$

From (7), $(z + \sqrt{3}x)(z - \sqrt{3}x) = (3 + \sqrt{3})(3 - \sqrt{3})[(a + \sqrt{3}b)(a - \sqrt{3}b)]^2$

Let us define $z + \sqrt{3}x = (3 + \sqrt{3})(a + \sqrt{3}b)^2$

By Equating real and imaginary parts, we get

$x = a^2 + 6ab + 3b^2$

$z = 3a^2 + 6ab + 9b^2$

Then the solutions of (1) are $x(a,b) = a^2 + 6ab + 3b^2$

$y(a,b) = a^2 - 3b^2$

$z(a,b) = 3a^2 + 6ab + 9b^2$

5.1 Properties:

1. $z(a,1) - y(a,1) - x(a,1)$ can be written as the sum of two perfect squares.

2. Each of the following is a perfect square
 (i) $2[x(a,1) + y(a,1)] - 24Pr_0a + 48PP_0a - 12SO_0a$
 (ii) $z(1,b) - 18Hex_b + 12Oct_b - 3$

3. $6z(a,1) - 60T_a + 6Hex_a$ is a Nasty number.

4. $x(a,1) + y(a,1) - CS_a - 4Gno_a = 0(\text{mod } 3)$

5. $z(a,1) - x(a,1) - 2CS_a + CH_a - Pr_{0a} = 0(\text{mod } 5)$

6. $2y(1,b) + 3Pen_b + 3T_b = 2$

7. $4x(1,b) - 3CS_b - 6Pr_{0b} - 12Gno_b = 0(\text{mod } 13)$

VI. Remarkable observations:

If (x_0, y_0, z_0) is any given solution of (1), then each of the following three triples (i to iii) of integers satisfies (1).

(i) (x_H, y_H, z_H), where $x_H = Y_{n-1}x_0 + X_{n-1}z_0$, $z_H = 3X_{n-1}y_0 + Y_{n-1}z_0$, $n = 1, 2, 3, \ldots$

\[[(X_{n-1}, Y_{n-1}) \text{ is the general solution of } Y^2 = 3X^2 + 1] \]

(ii) (x_N, y_N, z_N), where $y_N = Y_{n-1}y_0 + X_{n-1}y_0$, $z_N = 6X_{n-1}y_0 + Y_{n-1}z_0$, $n = 1, 2, 3, \ldots$

\[[(X_{n-1}, Y_{n-1}) \text{ is the general solution of } Y^2 = 6X^2 + 1] \]

(iii) (x_H, y_H, z_N), where $x_H = \frac{1}{3}\left[3^n + 2(-3)^n\right]y_0 + [2.3^n - 2(-3)^n]y_0$,

$y_H = \frac{1}{3}\left[3^n - (-3)^n\right]x_0 + [2.3^n + (-3)^n]y_0$ and $z_N = 3^n z_0$, $n = 1, 2, 3, \ldots$
Integral points on the homogeneous cone $z^2 = 3x^2 + 6y^2$

VII. Conclusion

One may search for other patterns of solutions and relations among the solutions, and also the relations between the solutions and polygonal numbers.

References