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Abstract:The Tanh method is implemented for the exact solutions of some different kinds of nonlinear partial 
differential equations. New solutions for nonlinear equations such as Benjamin-Bona-Mahony (BBM) 

equation, Gardner equation ,Cassama-Holm equation, and two component Kdv evolutionary system are 

obtained. 
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I. INTRODUCTION 
Non-linear evolution equations (NLEEs) had come a long way through. These NLEEs appear in 

various areas of Physics, Engineering, Biological Sciences, Geological Sciences and many other places [1–10]. 

These equations arise of necessity. Subsequently they are studied in these various scientific contexts. There are 

various aspects of these NLEEs that are studied by various scientists and engineers as the need arises. Some of 

the commonly studied aspects are integrability, conservation laws,numerical solutions and many other aspects. 

II. OUTLINE OFTHE TANH METHOD: 
The method is applied to find out exact solutions of a coupled system of nonlinear differential equation 

with unknown: 

P u, ux , ut , uxx , …… . .  = 0(1) 

where P is a polynomial of the variable u and its derivatives. If we consider u(x, t) = u(ξ), and 

ξ = kx + λt, so that  u(x, t) = U ξ , we can use the following changes: 
∂

∂t
= λ

d

dξ
 ,    

∂

∂x
= k

d

dξ
 ,

∂2

∂x2 = k2 d2

dξ2      ,   
∂3

∂x3 = k3 d3

dξ3(2) 

and so on, then Eq. (1) becomes an ordinary differential equation  

Q U, U′, U′′ , U′′′ , …… . .  = 0                                                                       (3) 
with Q being another polynomial form , which will be called the reduced ordinary differential equation. 

Integrating Eq.(3) as long as all terms contain derivatives, the integration constants are considered to be zeros in 

view of the localized solutions. However, the nonzero constants can be used and handled as well. Now finding 

the traveling wave solution to Eq.(1) is equivalent to obtaining the solution to the reduced ordinary differential 

equation (3). 

   The tanh method is introduced by Malfliet and Wazwaz [1,3,and4]. It is based on a priori assumption 

that the traveling wave solutions can be expressed in terms of the tanh function to solve the coupled KdV 

equations. For the tanh method, we introduce the new independent variable  

Y x, t = tanh(ξ)(4) 

that leads to the change of variables: 
d

dξ
= (1 − Y2)

d

dY
 

d2

dξ2
= −2Y 1 − Y2 

d

dY
+  1 − Y2 2

d2

dY2
 

d3

dξ3 =  2 1 − Y2  3Y2 − 1 
d

dY
−6Y 1 − Y2 2 d2

dY2 +  1 − Y2 3 d3

dY3(5) 

Then the solution is expressed in the form 

  u x, t = U ξ =  aiY
im

i=0 (6) 

where the parameter  m  can be found by balancing the highest-order linear term with the nonlinear 

terms in Eq.(3), and k, λ, a0, a1 ,……… , am  are to be determined.  
Substituting Eq.(4) or Eq.(5) into Eq.(3) will yield a set of algebraic equations for 

k, λ, a0 , a1 , ……… , am  because all coefficients of Yi have to vanish for i=0,1,2,3…... From these relations 

k, λ, a0 , a1 , ……… , am  can be obtained. Having determined these parameters, we can obtain the analytic solution 

u(x, t) in a closed form. These methods seem to be powerful tool in dealing with coupled nonlinear physical 

models. 
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III. APPLICATIONS: 
1. Benjamin-Bona-Mahony (BBM) equation: 

Consider the following BBM equation [11],  

ut = uxxt − ux − uux                      (7) 

Let  u(x, t) = u(ξ)and by using the wave variable  ξ = kx + λt,equation (7) turns to be the following 

ordinary differential equation: 

λu′ − λk2u′′′ + ku′ + kuu′ = 0(8) 
by integrating equation (8) once with zero constant, we have 

 λ + k u − λk2u′′ +
k

2
u2 = 0(9) 

Applying Tanh Method, eq.(9) becomes 

 λ + k u − λk2  −2Y 1 − Y2 
du

dY
+  1 − Y2 2 d2u

dY2
 +

k

2
u2 = 0(10) 

Where the solution can be formed as follows: 

u x, t =  aiY
im

i=0  (11) 

Where the parameter m can be determined by balancing the highest order of linear and non-linear terms 

in equation (3), which gives m=2, then equation (11) will become: 

u x, t =  aiY
i

2

i=0

 

u = a0 + a1Y + a2Y2 ,       a2 ≠ 0     (12) 
Where a0, a1 and a2 are constant parameters that must be determined; andto calculate those parameters 

substitute equation u and u′  from equation (11) in equation (10), and equating the terms with identical power of 

the parameter Y, then we obtain the following system of equations: 

Y0:  λ + k a0 − 2λk2a2 +
k

2
a0

2 = 0 

Y1:  λ + k a1 + ka0a1 = 0 

Y2:  λ + k a2 +
k

2
(2a0a2 + a1

2) = 0 

Y3: ka1a2 = 0 

Y4 : 
k

2
a2

2 = 0                         (13) 

Solving system of equations (13), we get: 

a0 = −
(λ+k)

k
 ,  a1 = 0 ,  a2 = −

(λ+k)2

4λk3  

And by substituting those parameters in equation (3.2), we get the solution: 

u(x, t) = −
 λ+k 

k
 1 +

 λ+k 

4λk2 tanh2(kx + λt)                                        (14) 

Now, for λ = k = 1, we have: 

u(x, t) = −2  1 +
1

2
tanh2(x + t) (15) 

Figure (1) shows the behavior of the solution u(x,t) in (15) for BBM equation. 

 
Fig.(1) solution u(x,t) in (15) for BBM equation. 

2. Gardner equation: 

Consider the following Gardner equation[11], 

ut = uxxx + 6uux                         (16) 

Let  u(x, t) = u(ξ)  and by using the wave variable ξ= kx + λt, equation (16) turns to be the following 

ordinary differential equation: 

λu′ − k3u′′′ − 3k u2 ′ = 0                             (17) 
And by integrating equation (4.1) once with zero constant, we have 
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λu − k3u′ ′ − 3ku2 = 0  (18) 
Applying Tanh Method, equation (18) becomes: 

λu − k3  −2Y 1 − Y2 
du

dY
+  1 − Y2 2 d2u

dY2
 + 3ku2 = 0              (19) 

Where the solution can be formed as follows: 

u x, t =  aiY
im

i=0    (20) 

Where the parameter m can be determined by balancing the highest order of linear and non-linear terms 

in equation (19), which gives m=2, then equation (20) will becomes: 

u = a0 + a1Y + a2Y2 ,       a2 ≠ 0                             (21) 
Where a0, a1 and a2 are constant parameters that must be determined; and to calculate those 

parameters substitute equation uand u′ ′ from equation (21) in equation (19), and equating the terms with 

identical power of the parameter Y, then we obtain: 

Y0: λa0 − 2k3a2 − 3ka0
2 = 0 

Y1: λa1 − 6ka0a1 = 0 

Y2: λa2 − 6ka0a2 − 3ka1
2 = 0 

Y3 : − 6ka1a2 = 0 

Y4 : − 3ka2
2 = 0                    (22) 

Solving system of equations (22), we get: 

a0 =
λ

6k
 ,  a1 = 0 ,  a2 =

λ2

24k4 

by substituting those parameters in equation (23), we get the solution: 

u(x, t) =
λ

6k
 1 +

λ

4k3 tanh2(kx + λt)                                                   (23) 

Now, for λ = k = 1, we have: 

u(x, t) =
1

6
 1 +

1

4
tanh2(x + t)                                  (24) 

Figure (2) shows the behavior of the solution u(x,t) in (24) for Gardner equation. 

 
Fig.(2) the solution u(x,t) in (24) for Gardner equation. 

 

3. Cassama-Holm equation: 

 Consider the following Cassama-Holm equation [11], 

ut + 2μux − uxxt + 3uux − 2ux uxx − uuxxx = 0                         (25) 

Let  u(x, t) = u(ξ)  and by using the wave variable  ξ = kx + λt, equation (25) turns to be the 

following ordinary differential equation: 

 λ + 2μk u′ +
3

2
k u2 ′ − λk2u′′′ − k3  

1

2
 u′ 2 + uu′′  

′

= 0              (26) 

by integrating equation (26) once with zero constant, we have 

 λ + 2μk u +
3

2
ku2 − λk2u′′ − k3 1

2
 u′ 2 − k3uu′′ = 0                    (27) 

Applying Tanh Method, equation (27) becomes: 

 λ + 2μk u +
3

2
ku2 − λk2  −2Y 1 − Y2 

du

dY
+  1 − Y2 2 d2 u

dY2
 −

k3

2
  1 − Y2 

du

dY
 

2

− k3u  −2Y 1 −

Y2dudY+1−Y22d2udY2=0(28) 

Where the solution can be formed as follows: 

u x, t =  aiY
im

i=0                      (29) 

Where the parameter m can be determined by balancing the highest order of linear and non-linear terms 

in equation (28), which gives m=2, then equation (29) will becomes: 

u = a0 + a1Y + a2Y2 ,       a2 ≠ 0                     (30) 
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Where a0, a1 and a2 are constant parameters that must be determined; and to calculate those 

parameters substitute equation (30), u′  and u′ ′ from equation (30) in equation (28), and equating the terms with 

identical power of the parameter Y, then we obtain: 

Y0:  λ + 2μk a0 +
3

2
ka0

2 − 2λk2a2 −
k3

2
a1

2 − 2k3a0a2 = 0 

Y1:  λ + 2μk a1 + 3ka0a1 − 4k3a1a2 = 0 

Y2:  λ + 2μk a2 + 3ka0a2 +
3

2
ka1

2 − 4k3a2
2 = 0 

Y3: 3ka1a2 = 0 

Y4 : 
3

2
ka2

2 = 0                 (31) 

Solving system of equations (31), we get: 

a0 =
λ2+2λμ k

2k(μk−λ)
 ,  a1 = 0 ,  a2 =

 λ+2μk 2

8k3(μk−λ)
 ,     μk > 𝜆 

by substituting those parameters in equation (30), we get the solution: 

u(x, t) =
 λ+2μk 

2k(μk−λ)
 λ +

 λ+2μk 

4k2 tanh2(kx + λt)                                   (32) 

Now, for λ= k = 1 and μ =
3

2
, we have: 

u(x, t) = 4 1 + tanh2(x + t)    (33) 
Figure (3) shows the behavior of the solution u(x,t) in (33) for Cassama-Holm equation. 

 

 
Fig.(3) the solution u(x,t) in (33) for Cassama-Holm equation. 

 

4. Two component Kdv evolutionary system [11]: 

Consider the following two component evolutionary systemof homogeneous Kdv equations of order 2, 

ut = −3vxx                                                                                              (34) 

vt = uxx + 4u2      (35) 

Let  u x, t = u ξ and v x, t = v ξ and by using the wave variable ξ = kx + λt, equations in (34), and 

(35) turn to be the following ordinary differential system: 

λu′ = −3k2v′′          (36) 

λv′ = k2u′′ + 4u2                                                                              (37) 
by integrating equation (36) once with zero constant, we have 

λu = −3k2v′                                                                                           (38) 
that leads to: 

v′ =
λ

−3k2 u(39) 

Now substitute in equation (39) in (37), we get: 

−
λ2

3k2 u − k2u′′ − 4u2 =0                                                                        (40) 

Applying Tanh Method, equation (40), becomes: 

−
λ2

3k2 u − k2  −2Y 1 − Y2 
du

dY
+  1 − Y2 2 d2u

dY2
 − 4u2 = 0                (41) 

Where the solution can be formed as follows: 

u x, t =  aiY
im

i=0           (42) 

Where the parameter m can be determined by balancing the highest order of linear and non-linear terms 

in equation (41), which gives m=2, then : 

u = a0 + a1Y + a2Y2 ,       a2 ≠ 0                      (43) 
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Where a0, a1 and a2 are constant parameters that must be determined; and to calculate those 

parameters substitute equation (43)and u′ ′ from equation (43) in equation (41), and equating the terms with 

identical power of the parameter Y, then we obtain: 

Y0 : −
λ2

3k2
a0 − 2k2a2 − 4a0

2 = 0 

Y1 : −
λ2

3k2
a1 − 8a0a1 = 0 

Y2 : −
λ2

3k2
a2 − 8a0a2 − 4a1

2 = 0 

Y3 : − 8a1a2 = 0 

Y4 : − 4a2
2 = 0                      (44) 

Solving system of equations (44), we get: 

a0 = −
λ2

24k2 ,  a1 = 0 ,  a2 =
λ4

288k6 

substitutingthose parameters in equation (43), we get the solution: 

u β =
λ2

24k2
 −1 +

λ2

12k4 tanh2(β)                          (45) 

substituting equation (45) in equation (39) and integrating once with respect to ξ, we have: 

v ξ = −
λ3

72k4
 −ξ +

λ2

12k4 (ξ − tanh ξ) +c                           (46) 

Then the solutions of u(x,t) and v(x,t) will become: 

u x, t =
λ2

24k2
 −1 +

λ2

12k4 tanh2(kx + λt)                                            (47) 

And 

v x, t = −
λ3

72k4
 −(kx + λt) +

λ2

12k4
 kx + λt − tanh(kx + λt)  +c   (48) 

Now, for λ = k = 1, we have: 

u(x, t) =
1

24
 −1 +

1

12
tanh2(x + t) (49) 

v x, t = −
1

72
 −(x + t) +

1

12
 (x + t) − tanh(x + t)  +c        (50) 

Figures (4) and (5) show the behavior of the solution of u(x,t) and v(x,t) in (49) and (50) respectively 

for the Kdv system. 

 

 
Fig.(4) the solution of u(x,t) in (49) for the Kdv system. 

 
Fig.(5) the solution of v(x,t) in (50) for the Kdv system. 
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IV. CONCLUSION  
           In this paper, the tanh method has been successfully applied to find the solution for four 

nonlinear partial differential equations such as the Benjamin-Bona-Mahony (BBM) equation, Gardner equation 

,Cassama-Holm equation, and two component Kdv evolutionary system of equations. The tanh method is used 
to find a new complex travelling wave solutions. The results show that the tanh method is a powerful 

mathematical tool to solve the nonlinear PDEs.  
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