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Abstract: In this paper, we aimed at determining all subgroups of the Symmetric group S5 up to Automorphism 

class using Sylow’s theorem and Lagrange’s theorem. This is achieved by finding all subgroups of order m for 

which m|O(S5) and are subsets of S5. It was vividly described and derived 156 subgroups of S5 and their 

conjugacy class size and Isomorphism class. The Alternating group A5 is the unique maximal normal subgroup 

of S5. Further, the Symmetric group S5 is centerless and every automorphism of it is inner. Also, every natural 

homomorphism to the automorphism group is an isomorphism. Hence, S5 is complete. The derived subgroups 

can be used to determine the number of Fuzzy subgroups of the symmetric group S5 for further research. 
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I. Introduction 
In mathematics, the notion of permutation is used with several slightly different meanings, all related to 

the act of permuting (rearranging in an ordered fashion) objects or values. Informally, a permutation of a set of 

values is an arrangement of those values into a particular order. Thus there are six permutations of the set 

{1,2,3}, namely, {[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1]}. In algebra and particularly in group 

theory, a permutation of a set S is defined as a bijection from S to itself (i.e., a map f : S → S for which every 

element of S occurs exactly once as image value). To such a map f is associated with the rearrangement of S in 

which each element s takes the place of its image f(s).  

Given any non empty set S, define A(S) to be the set of all bijections mapping of the set S onto itself. 

The set A(S) is a group with respect to composition of function. If the set S is finite with n elements, then the 

group A(S) is denoted by Sn. The order of Sn is n! And will be called Symmetric group. Any subset of Sn which 

is itself a group is called a subgroup of Sn. There are many references on subgroups of S2, S3 and S4 ([2], [7], [8] 
and [10]). Our aim in this paper is to critically examine all subgroups of S5 up to automorphism class and their 

conjugacy class size, which will aid our intention of counting the number of Fuzzy subgroups of S5 in our next 

article. The set of all symmetry operations on all objects in the set S, can be modeled as a group action g : G × S 

→ S, where the image of g in G and x in S is written as g·x. If, for some g, g·x = y then x and y are said to be 

symmetrical to each other. For each object x, operations g for which g·x = x is the symmetry group of the object, 

a subgroup of G. If the symmetry group of x is the trivial group then x is said to be asymmetric, otherwise 

symmetric. 

 

II. Preliminary 
Definition 1: The symmetric group S5 is defined in the following equivalent ways: It is the group of all 

permutations on a set of five elements, i.e., it is the Symmetric group of degree five. In particular, it is a 

symmetric group of prime degree and symmetric group of prime power degree. With this interpretation, it is 

denoted S5 or Sym(5). Equivalently, it is the projective general linear group of degree two over the field of five 

elements, i.e. PGL(2,5) [5]. 

Definition 2: Let G be a group and let N be a proper normal subgroup of G. Then N is called maximal subgroup 

of G if there does not exists any proper normal subgroup M of G such that NMG [12]. 

Definition 3: A homomorphism :GK from a group G to a group K is a function with the property that 

(g1g2) = (g1)(g2) for all g1, g2  G, where  denotes the group operation on G and on K [9]. 

Definition 4: An isomorphism :GK between two groups G and K is a homomorphism that is also a bijection 
mapping G onto K. Two groups G and K are isomorphic if there exists an isomorphism mapping G onto K, 

written as GK. While an automorphism is an isomorphism mapping a group onto itself [9]. 
Definition 5: A group is said to be complete if it satisfies the following equivalent conditions:  

1   It is centerless and every automorphism of it is inner.  

2   The natural homomorphism to the automorphism group, that sends each element to the conjugation via that 

     element is an isomorphism. 

3   Whenever it is embedded as a normal subgroup inside a bigger group, it is actually a direct factor  
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http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Set_%28mathematics%29
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     inside that bigger group. 

Equivalently; 

A group G is said to be complete if it satisfies the following equivalent conditions:  

1   The center of G i.e. Z(G) is trivial and Inn(G)=Aut(G) (i.e. every automorphism of G is inner), 

2   The natural homomorphism GAut(G) given by gCg (where Cg= xgxg
-1

) is an isomorphism, 
3   For any embedding of G as a normal subgroup of some group K, G is a direct factor of K [6]. 

Definition 6: A partial ordered on a nonempty set P is a binary relation ≤ on P that is reflexive, antisymmetric 

and transitive. The pair P,  is called a partially ordered set or poset. Poset P,  is totally ordered if every x, y 

P are comparable, that is x ≤ y or y ≤ x. A nonempty subset S of P is a chain in P if S is totally ordered by  
[11]. 

Definition 7: Let P, ≤ be a poset and let S  P. An upper bound for S is an element x  P for which s ≤ x ∀s 

 S. The least upper bound of S is called the supremum or join of S. A lower bound for S is an element x  P 

for which x ≤ s ∀s  S. The greatest lower bound of S is called the infimum or meet of S. Poset P, ≤ is called 

a lattice if every pair x, y of elements of P has a supremum and an infimum [11]. 

Note that the set of all subgroups of G under the ”subgroup” relation is a lattice. This lattice is called the lattice 

subgroup of G. 
Theorem 1: (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then order of H is a divisor 

of order of G [7]. 

Theorem 2: If G is a finite group and xG, then order of x is a divisor of order of G [7]. 
Theorem 3: (Cauchy’s Theorem) Let G be a finite group and let p be a prime number that divides the order of 

G. Then G contains an element of order p [3]. 

Theorem 4: (The First Sylow Theorem) Let G be a finite group and let |G| = pnm where n ≥ 1, p is a prime 

number and (p, m) = 1. Then G contains a subgroup of order pk for each k where 1 ≤ k ≤ n [8]. 

Definition 8: Let G be a finite group and let |G| = pnm where n ≥ 1, p is a prime number and (p, m) = 1. The 

subgroup of G of order pn is called the sylow p−subgroup of G [2]. 

Theorem 5: (Second Sylow Theorem) Let G be a finite group, and let p be a prime number dividing the order of 

G. Then all Sylow p-subgroups of G are conjugate, and any p-subgroup of G is contained in some Sylow p-

subgroup of G. Moreover the number of Sylow p-subgroups in G divides the order of G and is congruent to 1 

modulo p [8]. 
Theorem 6: (The Third Sylow Theorem) Let G be a finite group and let |G| = pnm where n ≥ 1, p is a prime 

number and (p, m) = 1. Then the number of Sylow p−subgroup is of the form (1+ kp), where k is a non-negative 

integer, and (1 + kp) divides the order of G [8]. 

Definition 9: A subgroup N of G is said to be a normal subgroup of G if for every g  G and n  N, gng−1 ∈ N 

[7]. 

Theorem 7: There is a unique Sylow p−subgroup of the finite group G if and only if it is normal [2]. 

Theorem 8: Let G be a group of order pq, where p and q are distinct primes and p < q. Then G has only one 

subgroup of order q. This subgroup of order q is normal in G [2]. 

Definition 10: A non-trivial group G is said to be simple if the only normal subgroups of G are the whole of G 

and the trivial subgroup {e} whose only element is the identity element e of G [3]. 

 

III. The One-Headed Group S5 
The one-headed group (Symmetric group) S5 is the group of permutations of the set S = {1, 2, 3, 4, 5}, 

i.e. if 









5

5

4

4

3

3

2

2

1

1
 , then the set of all bijections SSf :  defined by 5,;)(  jiaa ji  is 

called the Symmetric group S5. The collection of all such permutations gives rise to a group of order 120 as 

follows: 

S5 = {i, 1, 2, ..., 10, 1, 2, ..., 20, 1, 2, ..., 30, 1, 2, ..., 15, 1, 2, ..., 24, 1, 2, ..., 20} 
Where; 

i = (1) = the identity permutation. 

1 = (4 5), 2 = (3 5), 3 = (3 4), 4 = (2 5), 5 = (2 3), 6 = (2 4), 7 = (1 5), 8 = (1 4), 9 = (1 3), 10 = (1 2). 

1 = (1 2 3), 2 = (1 3 2), 3 = (1 2 4), 4 = (1 4 2), 5 = (1 2 5), 6 = (1 5 2), 7 = (1 3 4), 8 = (1 4 3), 9 = (1 4 

5), 10 = (1 5 4), 11 = (1 3 5), 12 = (1 5 3), 13 = (2 3 4), 14 = (2 4 3), 15 = (2 3 5), 16 = (2 5 3), 17 = (2 4 5), 

18 = (2 5 4), 19 = (3 4 5), 20 = (3 5 4). 

1 = (2 3 4 5), 2 = (2 5 4 3), 3 = (2 3 5 4), 4 = (2 4 5 3), 5 = (2 4 3 5), 6 = (2 5 3 4), 7 = (1 2 3 4), 8 = (1 4 3 

2), 9 = (1 2 3 5), 10 = (1 5 3 2), 11 = (1 2 4 3), 12 = (1 3 4 2), 13 = (1 2 4 5), 14 = (1 5 4 2), 15 = (1 2 5 3), 16 

= (1 3 5 2), 17 = (1 2 5 4), 18 = (1 4 5 2), 19 = (1 3 4 5), 20 = (1 5 4 3), 21 = (1 3 5 4), 22 = (1 4 5 3), 23 = (1 3 

2 4), 24 = (1 4 2 3), 25 = (1 3 2 5), 26 = (1 5 2 3), 27 = (1 4 3 5), 28 = (1 5 3 4), 29 = (1 4 2 5), 30 = (1 5 2 4). 



Counting the Subgroups of the One-Headed Group S5 up to Automorphism 

www.iosrjournals.org                                                             89 | Page 

1 = (2 4)(3 5), 2 = (2 5)(3 4), 3 = (2 3)(4 5), 4 = (1 3)(2 4), 5 = (1 3)(2 5), 6 = (1 4)(2 3), 7 = (1 4)(2 5), 8 = 

(1 5)(2 3), 9 = (1 5)(2 4), 10 = (1 4)(3 5), 11 = (1 5)(3 4), 12 = (1 2)(3 4), 13 = (1 2)(3 5), 14 = (1 3)(4 5), 15 = 
(1 2)(4 5). 

1 = (1 2 3 4 5), 2 = (1 3 5 2 4), 3 = (1 4 2 5 3), 4 = (1 5 4 3 2), 5 = (1 2 3 5 4), 6 = (1 3 4 2 5), 7 = (1 5 2 4 

3), 8 = (1 4 5 3 2), 9 = (1 2 4 5 3), 10 = (1 4 3 2 5), 11 = (1 5 2 3 4), 12 = (1 3 5 4 2), 13 = (1 2 4 3 5), 14 = 

(1 4 5 2 3), 15 = (1 3 2 5 4), 16 = (1 5 3 4 2), 17 = (1 2 5 4 3), 18 = (1 5 3 2 4), 19 = (1 4 2 3 5), 20 = (1 3 4 5 

2), 21 = (1 2 5 3 4), 22 = (1 5 4 2 3), 23 = (1 3 2 4 5), 24 = (1 4 3 5 2). 

1 = (1 2 3)(4 5), 2 = (1 3 2)(4 5), 3 = (1 2 4)(3 5), 4 = (1 4 2)(3 5), 5 = (1 2 5)(3 4), 6 = (1 5 2)(4 5), 7 = (1 

3 4)(2 5), 8 = (1 4 3)(2 5), 9 = (1 4 5)(2 3), 10 = (1 5 4)(2 3), 11 = (1 3 5)(2 4), 12 = (1 5 3)(2 4), 13 = (1 5)(2 

3 4), 14 = (1 5)(2 4 3), 15 = (1 4)(2 3 5), 16 = (1 4)(2 5 3), 17 = (1 3)(2 4 5), 18 = (1 3)(2 5 4), 19 = (1 2)(3 4 

5), 20 = (1 2)(3 5 4). 
Now the order of an element x of a group G is the least positive integer n for which xn = e, the identity element 

of the group G, where xn represents x  x  x  …  x n-times. Then writing the elements of the group S5 in the 
form xn, we classify them according to their order, and the order of each element divides the order of S5 (see 

Lagrange’s theorem). The orders of these elements are given in the table below. 

 

Table 1: Order of elements of S5 
 

Orde

r 

 

Elements 

Formula 

Calculating 

Element Order 

1 i LCM{1} 

2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 LCM{2,1} 

3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 LCM{3,1} 

4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 LCM{4,1} 

5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 LCM{5,1} 

6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 LCM{2,3} 

 

IV. Main Results 
According to the Lagrange’s theorem, the order of any non-trivial subgroup of S5 divides the order of 

S5. Therefore we shall determine all subgroups of S5 and their isomorphism class. Obviously, the only subgroup 
of S5 of order 1 is the trivial subgroup G1 = {i}. 

 

4.1 Subgroups of order 2 

Let H be arbitrary subgroup of S5 of order 2. Since 2 is a prime number, H is cyclic. Hence, H is 

generated by an element of S5 of order 2. Thus all subgroups of S5 of order 2, isomorphic to the cyclic group Z2 

are: 

 Hk = {i, j : 1  j  10} = j; 2  k  11, (for each j, Hk  S2), and 

 Hk = {i, j : 1  j  15} = j; 12  k  26, (subgroup generated by double transposition in S5) 

 

4.2 Subgroups of order 3 

Subgroups of S5 of order 3 are generated by elements of S5 of order 3. Thus, all subgroups of S5 of 

order 3, isomorphic to the cyclic group Z3 are 

 Lk = {i, j, j+1 : j
-1 = j+1; 1  j  19} = j = j+1; 27  k  36. 

Note that if j
-1 = j+1, then j = j+2 for next k. Lk is cyclic since 3 is prime. 

 

4.3 Subgroups of order 4 

Let M be arbitrary subgroup of S5 of order 4. Then by theorem 2, elements of M must have order 1, 2 
or 4. Hence if M consists of elements of order 4, then M is generated by an element of order 4. Thus, we 

obtained 

 Mk = {i, j, (j+1)/2, j+1 : j
-1 = j+1; j = 1, 3, ..., 29} = j = j+1; 37  k  51. 

We also have subgroups of S5 of order 4 generated by pair of disjoint transpositions in S5 as follows: 

M52 = {i, 2, 6, 1}, M53 = {i, 3, 4, 2}, M54 = {i, 1, 5, 3}, M55 = {i, 6, 9, 4}, M56 = {i, 4, 9, 5}, M57 = 

{i, 5, 8, 6}, M58 = {i, 4, 8, 7}, M59 = {i, 5, 7, 8}, M60 = {i, 6, 7, 9}, M61 = {i, 2, 8, 10}, M62 = {i, 

3, 7, 11}, M63 = {i, 3, 10, 12}, M64 = {i, 2, 10, 13}, M65 = {i, 1, 9, 14}, M66 = {i, 1, 10, 15}. 
Furthermore, we have 5 other subgroups of S5 of order 4 generated by double transpositions on four elements in 

S5, i.e. Mk for 67  k  71. 

 

4.4 Subgroups of order 5 

Let N be any arbitrary subgroup of S5 of order 5. Since 5 is a prime number, the subgroup N is cyclic 
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and is generated by an element of S5 of order 5. Hence, we have 6 such subgroups given by 

 Nk = {i, j, j+1, j+2, j+3} = j = j+1 = j+2 = j+3; 72  k  77. 

 

4.5 Subgroups of order 6 

If P is any arbitrary subgroup of S5 of order 6, then we generates from the elements of S5 of order 6 i.e. 

’s, the following subgroups, isomorphic to the cyclic group Z6; 

  Pk = {i, 2j-1, 2j, j, 2j-1, 2j : 2j
-1 = 2j-1, 2j

-1 = 2j-1; 1  j  10} 

     = 2j = 2j-1; 78  k  87. 

Again by Sylow’s theorem, since 6 = 2  3, other subgroups of S5 of order 6 can be generated from the product 

of the elements of S5 of order 2 with those elements of order 3. i.e. ’s and ’s given by 

{i, 1, 1, 2, 1, 2}, {i, 3, 2, 4, 3, 4}, ..., {i, 19, 10, 20, 19, 20}. Hence, we have 

 Pk = {i, 2j-1, j, 2j, 2j-1, 2j : 2j
-1 = 2j-1; 2j

-1 = 2j-1; 1j 10}; 88  k  97.  
Also, S3 is obviously a subset of S5, i.e. we have subgroups generated by each of the following set of elements 

by permutation: 

(1 2 3), (1 2 4), (1 2 5), (1 3 4), (1 3 5), (1 4 5), (2 3 4), (2 3 5), (2 4 5) and (3 4 5). 

Hence we generate 10 such subgroups of S5 of order 6, isomorphic to S3 i.e. Pk such that 98  k  107. 

 

4.6 Subgroups of order 8 

Since 8 is a multiple of 2 and 4, elements of the subgroup of order 8 must have orders 2 or 4 only. 

Consider the set of permutations 
 Q = {i, (2 3 4 5), (2 5 4 3), (2 4)(3 5), (2 4), (3 5), (2 3)(4 5), (2 5)(3 4)}, i.e. 

 Q = {i, 1, 2, 1, 6, 2, 3, 2} 

Obviously, this is a subgroup of S5 of order 8. To see this, let us construct a multiplication table of Q  Q as 
follows. 

Table 2: Multiplication table of Q  Q. 
 i 1 2 1 6 2 3 2 

i i 1 2 1 6 2 3 2 

1 1 1 i 2 3 2 2 6 

2 2 i 1 1 2 3 6 2 

1 1 2 1 i 2 6 2 3 

6 6 2 3 2 i 1 2 1 

2 2 3 2 6 1 i 1 2 

3 3 6 2 2 1 2 i 1 

2 2 2 6 3 2 1 1 i 

Clearly, from table 2 above, the set Q is a subgroup of S5 of order 8. By constructing such subgroups from the 

combinations of j’
s, j’

s and j’
s, we obtained 15 subgroups of S5 of order 8, isomorphic to the Dihedral group 

D8. i.e. Qk such that 108  k 122. 

 

4.7 Subgroups of order 10 

Let R be any arbitrary subgroup of S5 of order 10. Now, consider the elements (1 2 3 4 5) of order 5 

and the transposition (2 5)(3 4) of order 2 (since 10 = 2  5). Then 

 Rk = (1 2 3 4 5), (2 5)(3 4) = 1, 2 
= {i, (1 2 3 4 5), (2 5)(3 4), (1 3 5 2 4), (1 4 2 5 3), (1 5)(2 4), (1 4)(2 3),   (1 5 4 3 2), (1 3)(4 5), (1 

2)(3 5)}. i.e. 

 Rk = {i, 1, 2, 2, 3, 9, 6, 4, 14, 13} 

is a subgroup of S5 of order 10. By constructing similar subgroups, we obtained 6 subgroups of S5 of order 10, 

isomorphic to the Dihedral group D10. i.e. Rk, 123  k 128. 

 

4.8 Subgroups of order 12 

Since 12 = 22  3, the direct product of S2 and S3 in S5 is a subgroup of S5. Hence, if T is any arbitrary 
subgroup of S5 of order 12, then 

 T = {i, 10, 1, 1, 2, 5, 1, 9, 15, 3, 2, 14} 

is a subgroup of S5 of order 12. Hence, we obtained 10 such subgroups of order 12. i.e. Tk; 129  k  138, 
isomorphic to the direct product of S2 and S3. 

Similarly, A4 is obviously a subgroup of S5, and each of the elements (1 2 3 4), (1 2 3 5), (1 2 4 5), (1 3 4 5) and 

(2 3 4 5) generate A4. Thus, we have 5 such subgroups i.e. Tk; 139  k  143 isomorphic to A4. 
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4.9 Subgroups of order 20 

The composition of elements of S5 of order 5 with those elements of order 4 formed subgroups of S5 of 

order 20 (20 = 5  4). Hence, if U is an arbitrary subgroup of S5 of order 20, then 

 U = (1 2 3 4 5), (2 3 5 4) 

is a subgroup generated by two elements 1 and 3. By considering similar elements, we obtained 6 such 

subgroups of order 20. i.e. Uk; 144  k  149, isomorphic to the General Affine group GA(1,5). 

 

4.10 Subgroups of order 24 

Each of the following subset of S5 consisting of four elements generates subgroup of S5 of order 24. i.e. 

(1 2 3 4), (1 2 3 5), (1 2 4 5), (1 3 4 5) and (2 3 4 5). Hence, if V is any arbitrary subgroup of S5 generated by 

any of the above elements, then V is a subgroup of order 24, i.e. Vk; 150  k  154, isomorphic to S4. 

 

4.11 Subgroup of order 60 

The only subgroup of S5 of order 60 is the alternating group A5, consisting of all the even permutations 
in S5. Such subgroup is unique. Hence, we have 

 A5 = (1 2 3 4 5), (1 2 3) = 1, 1, i.e. 

A5 = {i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 

6, 

          7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18,   

        19, 20, 21, 22, 23, 24}. 

 

4.12 Subgroup of order 120 
Every group is a subgroup of itself. Hence, the whole group S5 is a subgroup of S5 of order 120. 

The table below gives the summary of all subgroups of S5 and their Automorphism classes, Isomorphism 

classes, Order (in ascending order), Index, occurrence as normal subgroup, number of Conjugacy classes and 

size of each conjugacy class. 

 

Table 3: Table classifying isomorphism types of subgroups 

Automorphism 

class of 

subgroups  

Isomorphism class  
Order of 

subgroups  

Index of 

subgroups  

Occurrence 

as normal 

subgroup 

Number of 

conjugacy 

classes  

Size of 

each 

conjugacy 

class  

Total 

number of 

subgroups  

trivial subgroup trivial group 1 120 1 1 1 1 

S2 in S5 Cyclic group Z2 2 60 0 1 10 10 

Subgroup gen. by 

double trans. in 

S5 

Cyclic group Z2 2 60 

0 

1 15 15 

Z3 in S5 Cyclic group Z3 3 40 0 1 10 10 

Z4 in S5 Cyclic group Z4 4 30 0 1 15 15 

Subgroup gen. by 

pair of disjoint 

trans. 

Klein-four group 4 30 

 

0 1 15 15 

Subgroup gen. by 

double trans. On 

4 elements in S5 

Klein-four group 4 30 

 

0 1 5 5 

Z5 in S5 Cyclic group Z5 5 24 0 1 6 6 

Z6 in S5 Cyclic group Z6 6 20 0 1 10 10 

Twisted S3 in S5 Symmetric group S3 6 20 0 1 10 10 

S3 in S5 Symmetric group S3 6 20 0 1 10 10 

D8 in S5 Dihedral group D8 8 15 0 1 15 15 

D10 in S5 Dihedral group D10 10 12 0 1 6 6 

Direct product of 

S3 and S2 in S5 
Direct product of S3 and Z2 12 10 

0 
1 10 10 

A4 in S5 Alternating group A4 12 10 0 1 5 5 

GA(1,5) in S5 General Affine group: GA(1,5) 20 6 0 1 6 6 

S4 in S5 Symmetric group S4 24 5 0 1 5 5 
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A5 in S5 Alternating Group A5 60 2 1 1 1 1 

whole group symmetric group S5 120 1 1 1 1 1 

Total (19 rows) 
   

 

3 19  
 

156  

There are seven conjugacy classes corresponding to the unordered partitions of {1, 2, 3, 4, 5}. Now since cycle 

type determine conjugacy class and the length of a cycle is found to be the number of elements in that cycle, we 

notice that any conjugate of a k cycle is again a k-cycle [4]. This is also supported by the theorem: 

Theorem 9: The conjugacy classes of any Sn are determined by cycle type. That is, if  has cycle type (k1, k2, 

…, kl), then any conjugate of  has cycle type (k1, k2, …, kl), and if  is any other element of Sn with cycle type 

(k1, k2, …, kl), then  is conjugate to  [1]. 
For the proof of the above theorem, see [4]. We therefore use this information to derive the following table, 

classifying the size of conjugacy class of elements of S5. 

 

Table 4: Size of Conjugacy classes of elements of S5 

Element 
Partition 

Verbal description of cycle 

type 

Representative element with 

the cycle type 

Size of 

conjugacy class 

Formula Calculating 

Size of Conjugacy Class 

i 
1 + 1 + 1 + 1 

+ 1 
five fixed points (1) the identity element 1 

)!5)(1(

!5
5

 

j 

2 + 1 + 1 + 1 
transposition: one 2-cycle, 

three fixed point 
(1 2) 10 

)]!3)(1)][(!1)(2[(

!5
31

 

j 

2 + 2 + 1 
double transposition: two 2-

cycles, one fixed point 
(1 2)(3 4) 15 

)]!1)(1)][(!2)(2[(

!5
12

 

j 

3 + 1 + 1 one 3-cycle, two fixed points (1 2 3) 20 
)]!2)(1)][(!1)(3[(

!5
21

 

j 

3 + 2 one 3-cycle, one 2-cycle (1 2 3)(4 5) 20 
)]!1)(2)][(!1)(3[(

!5
11

 

j 

4 + 1 one 4-cycle, one fixed point (1 2 3 4) 30 
)]!1)(1)][(!1)(4[(

!5
11

 

j 

5 one 5-cycle (1 2 3 4 5) 24 
)!1)(5(

!5
1

 

Total 
   

120 5! 

The sum of the conjugacy classes is equal to the order of the group S5. The center of a group G is defined to be 
the set of those elements that commute with every other element of G, given by Z(G) = {x : xg = gx for all 

gG}. Observed that the center of S5 is the trivial subgroup { i }, consisting of the identity permutation. Hence, 
S5 is centerless. S5 is also almost simple group since it contains a centralizer-free simple normal subgroup, i.e. 

A5. The Alternating group A5 is simple. Hence, A5 is the unique maximal normal subgroup of S5. This is 

supported by the lemma given below. 

Lemma 1: The alternating group A5 is simple [3]. 

Proof: A5 is given as the group of even permutations of the set {1, 2, 3, 4, 5}. There are 60 such permutations 

(see section 4.11) which is a combination of j, j, j and the identity permutation. Now, each j in A5 generates 
a Sylow 3-subgroup of order 3, and these subgroups are all conjugate to one another by the Second Sylow 

Theorem. It follows that any normal subgroup of A5 that contains at least one j must contain all j; 1j20, and 

thus its order must therefore be at least 21 (since it must also contain the identity permutation). Similarly each j 
in A5 generates a Sylow 5-subgroup of order 5, and these subgroups are all conjugate to one another. Therefore 

any normal subgroup of A5 that contains at least one j must contain all j; 1j24, and thus its order must be at 
least 25. 

Now if A5 were to contain a subgroup of order 30, this subgroup would be the kernel of a non-constant 

homomorphism :A5  {1, -1} from A5 to the multiplicative group consisting of the numbers 1 and -1. But any 
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j or j would have to belong to the kernel of this homomorphism, and therefore this kernel would contain at 
least 45 elements, which is impossible. We conclude that A5 cannot contain any subgroup of order 30. It follows 

from Lagrange's Theorem that any normal subgroup of A5 that contains at least one j or j must be the whole of 
A5. 

The group A5 contains 5 Sylow 2-subgroups, which are of order 4. One of these consists of the identity 

permutation, together with the three permutations 12, 4 and 6. (Each of these permutations fixes the element 
5). There are four other such Sylow 2-subgroups, and all of the Sylow 2-subgroups are conjugate to one another. 

It follows that A5 does not contain any normal subgroup of order 4. Moreover A5 cannot contain any normal 

subgroup of order 2, since any element of order 2 belongs to one of the five Sylow 2-subgroups of order 4, and 

is therefore conjugate to elements of order 2 in the other Sylow 2-subgroups. 

Now any subgroup of A5 whose order is divisible by 3 must contain j by Cauchy's Theorem. Similarly 

any subgroup of A5 whose order is divisible by 5 must contain j. It follows that the order of any proper normal 
subgroup of A5 cannot be divisible by 3 or 5. But this order must divide 60. Therefore the order of any proper 

normal subgroup of A5 must be at most 4. But we have seen that A5 cannot contain any normal subgroup of 

order 4 or 2. Therefore any proper normal subgroup of A5 is trivial, and therefore A5 is simple. 

 

V. Conclusion 
From abstract point of view, the symmetric group Sn is not a nilpotent group since it is centerless, i.e. 

has no central series. But it is a one-headed group since the Alternating group A5 is its unique maximal normal 

subgroup. The generated subgroups of S5 will be useful in the event of studying the Fuzzy subgroups of S5 since 

we have analyzed and pointed out all the methods used in generating the elements of these subgroups. Though 

there are other properties such as isomorphism classes of Sylow subgroups and the corresponding Sylow 

numbers and fusion systems, extended automorphism group and the lattice structure of S5 that are not treated in 

this article, but recommended for further studies. The Fuzzy subgroups of the One-headed group S5 will be 

useful in the area of signal/image processing. 
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