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Abstract: In this paper, we present a continuous block integrator for direct integration of stiff and oscillatory 

first-order ordinary differential equations using interpolation and collocation techniques. The approximate 

solution used in the derivation is a combination of power series and exponential function. The paper further 

investigates the properties of the block integrator and found it to be zero-stable, consistent and convergent. The 

integrator was also tested on some sampled stiff and oscillatory problems and found to perform better than 

some existing ones. 
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I. Introduction 
Nowadays, the integration of Ordinary Differential Equations (ODEs) could be carried out using block 

integrators. In this paper, we present a continuous block integrator for direct integration of stiff and oscillatory 
problems of the form, 

0' ( , ), ( ) , [ , ]y f x y y a y x a b           (1) 

where 0: , , ,m m mf y y f   satisfies Lipchitz condition which guarantees the existence and 

uniqueness of solution of (1). The development of numerical integration formulas for stiff as well as oscillatory 
differential equations has attracted considerable attention in the past (Fatunla, 1980). A special problem arising 

in the solution of ODEs is stiffness. This problem occurs in single linear and nonlinear ODEs, higher-order 

linear and nonlinear ODEs and systems of linear and nonlinear ODEs (Hoffman, 2001). It is also important to 

note that mathematical models of physical situations in kinetic chemical reactions, process control and electrical 

circuit theory often results to stiff ODEs (Fatunla, 1980). According to Sanugi and Evans (1989), an interesting 

and important class of IVPs which can also arise in practice consists of differential equations whose solutions 

are known to be periodic or to oscillate with a known frequency. Examples of such problems can be found in the 

field of ecology, medical sciences and oscillatory motion in a nonlinear force field. 

 Almost invariably, most conventional numerical integration solvers cannot efficiently cope with stiff 

and oscillatory problems of the form (1) as they lack adequate stability characteristics (Fatunla, 1980). The 

degree of stiffness of a problem depends on the definition of stiffness that is applied (Okunuga et al., 2013). 
There are various definitions of stiffness in the literature as regards to ODEs. Lambert (1973) gave a simple 

definition of stiffness of an ODE in a such a manner that problem (1) possesses some stiffness if 

Re( ) 0, 1(1)i i m   , where   is the eigen value of the problem. A stiff equation is a differential equation 

for which certain numerical methods for solving the equation are numerically unstable, unless the step size is 

taken to be extremely small. The main idea is that the equation includes some terms that can lead to rapid 

variation in the solution. On the other hand, a nontrivial solution (function) of an ODE is called oscillating if it 

does not tend either to a finite limit or to infinity (i.e. if it has an infinite number of roots). The differential 

equation is called oscillating, if it has at least one oscillating solution (Borowski and Borwein, 2005). There are 

different concepts of the oscillation of a solution. The most widespread are oscillation at a point (usually taken 

to  ) and oscillation on an interval. 

 More recently, authors like Butcher (2003), Zarina, Mohammed, Kharil and Zanariah (2005), 

Awoyemi, Ademiluyi and Amuseghan (2007), Okunuga, Akinfewa and Daramola (2008), Abbas (2009), Areo, 

Ademiluyi, and Babatola (2011), Ibijola, Skwame and Kumleng (2011), Akinfewa, Yao and Jator (2011),  

Chollom, Olatunbosun and Omagu (2012), Okunuga, Sofoluwe and Ehigie (2013), Yakubu, Madaki and Kwami 
(2013), Ajie, Ikhile and Onumanyi (2013), among others, have all proposed block methods to generate 

numerical solution to (1). These authors proposed methods in which the approximate solution ranges from 

power series, Chebychev’s, Lagrange’s and Laguerre’s polynomials.   

 In this paper, the derivation of the continuous block integrator is carried out using an approximate 

solution which is a combination of power series and exponential function. 
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II. Methodology: Construction of the Continuous Block Integrator 
In deriving the integrator, interpolation and collocation procedures are used by choosing interpolation 

point s at a grid point and collocation points r  at all points giving rise to s r    system of equations 

whose coefficients are determined by using appropriate procedures. The approximate solution to (1) is taken to 

be a combination of power series and exponential function given by, 
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with the first derivative given by, 
11

1

0 1

'( )
( 1)!

j jr s r s
j

j r s

j j

x
y x ja x a

j

   




 

 


          (3) 

where , j

ja    for 0(1)4j   and ( )y x is continuously differentiable. Let the solution of (1) be sought on 

the partition 0:N a x  < 1x < 2x < . . . < nx < 1nx  < . . .< Nx = b , of the integration interval  ,a b  with a 

constant step-size h , given by,
1n nh x x  , 0,1,...,n N

.
    

Then, substituting (3) in (1) gives, 
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Now, interpolating (2) at point , 0n sx s   and collocating (4) at points , 0(1)3n rx r  , leads to the following 

system of equations,  

AX U            (5) 

where  
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1 2 3[ ]T

n n n n nU y f f f f     

and  

2 2 3 3 4 4
2 3

3 2 4 3
2 2

3 2 4 3
2 2 1 1

1 1 1

3 2 4 3
2 2 2 2

2 2 2

2 2

3 3 3

1 1
2! 3! 4!

0 1 2 3
2! 3!

0 1 2 3
2! 3!

0 1 2 3
2! 3!

0 1 2 3

n n n
n n n n

n n
n n n

n n
n n n

n n
n n n

n n n

x x x
x x x x

x x
x x x

x x
X x x x

x x
x x x

x x x

  


 
 

 
 

 
 


 

 
  

 
  

  

 
    

 

 
   

 

 
    

 

 
   

 

 
3 2 4 3

3 3

2! 3!

n nx x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
   

 

Solving (5), for ' , 0(1)4ja s j   and substituting back into (2) gives a continuous linear multistep method of 

the form,  
3
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where 0 1  and the coefficients of n jf  gives 
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where ( )nt x x h  . Evaluating (6) at 1(1)3t  gives a continuous discrete block scheme of the form, 

(0) ( ) ( )m n n mA hd hb  Y Ey f y F Y         (8) 

where 
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III. Analysis of Basic Properties of the New Block Integrator 
3.1. Order of the New Block Integrator 

Let the linear operator  ( );L y x h  associated with the block (8) be defined as, 

  (0)( ); ( ) ( )m n n mL y x h A Y Ey hdf y hbF Y          (9) 

expanding using Taylor series and comparing the coefficients of h  gives, 

  2 1 1

0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ...p p p p

p pL y x h c y x c hy x c h y x c h y x c h y x 

          (10) 

Definition 3.1  

The linear operator L  and the associated continuous linear multistep method (6) are said to be of order p if 

0 1 2 1... 0 0.p pc c c c and c      
1pc 
 is called the error constant and the local truncation error is 

given by, 
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(12) 

Expanding (12) in Taylor series gives, 
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Hence,  0 1 2 3 4 50, 2.64( 02), 1.11( 02),3.75( 02)
T

c c c c c c           . Therefore, the block 

integrator is of order four. 

 

3.2. Zero Stability 

Definition 3.2  

The block integrator (8) is said to be zero-stable, if the roots , 1,2,...,sz s k  of the first characteristic 

polynomial ( )z  defined by 
(0)( ) det( )z z  A E  satisfies 1sz   and every root satisfying 1sz   

have multiplicity not exceeding the order of the differential equation. Moreover, as 0,h  

( ) ( 1)rz z z     where   is the order of the differential equation, r  is the order of the matrices 

(0) andA E  (see Awoyemi et al. (2007) for details).  

For our integrator, 
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2

1 2 3( ) ( 1) 0, 0, 1z z z z z z        . Hence, the block integrator is zero-stable. 

 

3.3. Convergence 
The new block integrator is convergent by consequence of Dahlquist theorem below. 

Theorem 3.1 (Dahlquist, 1956) 

The necessary and sufficient conditions that a continuous LMM be convergent are that it be consistent and zero-

stable.  

 

3.4. Region of Absolute Stability 

Definition 3.3 (Yan, 2011) 

Region of absolute stability is a region in the complex z plane, where z h . It is defined as those values of 

z such that the numerical solutions of 'y y  satisfy 0jy as j   for any initial condition. 

 To determine the absolute stability regions of the block integrators, we adopt the boundary locus 

method. This is achieved by substituting the test equation, 

 'y y             (15) 

into the block formula (8). This gives, 
(0) ( ) y ( ) ( ) ( )m n n mr r h y r h r   A Y E D BY        (16) 

Thus, 
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Writing (17) in trigonometric ratios gives, 
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where 
ir e  . Equation (18) is our characteristic or stability polynomial. 
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which gives the stability region shown in fig. 1 below. 
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Fig.1: Showing Stability Region of the Continuous Block Integrator

 
According to Fatunla (1988), stiff algorithms have unbounded RAS. Also, Lambert (1973) showed that the 

stability region for L-stable schemes must encroach into the positive half of the complex z plane. 
 

IV. Numerical Experiments 
We shall use the following notations in the tables below; 

ERR- |Exact Solution-Computed Result| 

ESSI- Error in Skwame et al.  (2012) 

Problem 1 

Consider the highly stiff ODE 

0 0' ( , ) ( ( )) '( ), ( )y f x y y F x F x y x y              (19) 

which has the exact solution 

0( ) ( (0)) ( )xy x y F e F x          (20) 

where  is a positive constant and ( )F x is a smooth slowly varying function. Equation (20) exhibits two 

widely different time scales: a rapidly changing term associated with exp( )x  and a slowly varying term 

associated with ( )F x , (Gear, 1971). 

Skwame et al. (2012) considered a special case of (19) where 0 010, ( ) 0, 0 1F x x and y     . They 

solved the problem (19) by adopting an L-stable hybrid block Simpson’s method of order six. 

 

Problem 2 

Consider the oscillatory ODE 

' sin 200( cos ), (0) 0y x y x y            (21) 

whose exact solution is given by: 

 
200( ) cos xy x x e               (22) 

Though Yan (2011) did not solve this problem, he however observed that it has a solution that oscillates and 

grows exponentially in x . He further stated that most numerical methods do not perform well on this problem. 

 

Table 1: Showing the result for stiff problem 1 

 

    x          Exact solution            Computed solution         ERR                ESSI 

0.0100    0.9048374180359595    0.9048371857175926    2.323184e-007       6.28e-03 
0.0200    0.8187307530779818    0.8187306524074074    1.006706e-007       1.88e-03 

0.0300    0.7408182206817179    0.7408178956250000    3.250567e-007       3.26e-03 
0.0400    0.6703200460356393    0.6703195798065542    4.662291e-007       1.06e-03 
0.0500    0.6065306597126334    0.6065303190001389    3.407125e-007       3.85e-03 
0.0600    0.5488116360940265    0.5488111544782535    4.816158e-007       1.45e-03 
0.0700    0.4965853037914095    0.4965847405085258    5.632829e-007       5.02e-04 
0.0800    0.4493289641172216    0.4493285145544429    4.495628e-007       2.76e-04 
0.0900    0.4065696597405992    0.4065691245561065    5.351845e-007       1.01e-04 
0.1000    0.3678794411714423    0.3678788624630128    5.787084e-007       3.74e-05 
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Table 2: Showing the result for oscillatory problem 2 

                                      x           Exact solution               Computed solution       ERR 

0.0010    0.1812687469220599    0.1812753281481898    6.581226e-006 
0.0020    0.3296779539650273    0.3296808918525185    2.937887e-006 

0.0030    0.4511838639093485    0.4511932600033750    9.396094e-006 
0.0040    0.5506630358934451    0.5506743405562253    1.130466e-005 
0.0050    0.6321080588545993    0.6321159695640156    7.910709e-006 
0.0060    0.6987877881417979    0.6987981014249823    1.031328e-005 
0.0070    0.7533785361584351    0.7533889621198869    1.042596e-005 
0.0080    0.7980714821760110    0.7980792802208783    7.798045e-006 
0.0090    0.8346606120517877    0.8346691020538365    8.490002e-006 
0.0100    0.8646147171800527    0.8646227560193114    8.038839e-006 

 

V. Conclusion 
We have presented a continuous block numerical integrator for the solution of stiff and oscillatory first-

order ordinary differential equations. The approximate solution (basis function) adopted in this research 
produced a block integrator with L-stable stability region. This made it possible for the block integrator to 

perform well on stiff and oscillatory problems. The block integrator proposed was also found to be zero-stable, 

consistent and convergent. The integrator was also found to perform better than some existing methods. 
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