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Abstract: The smoothness-increasing operator “convolution” is well known for inheriting the best properties 

of each parent function. It is also well known that if f  L1 and g is a Bounded Variation (BV) function, then f  

g inherits the properties from the parent’s spaces. This aspect of BV can be generalized in many ways and many 

generalizations are obtained. However, in this paper we introduce the notion of p – Bounded variation 

function. In relation to that we show that the convolution of two functions f  g is the inverse Fourier transforms 

of the two functions. Moreover, we prove that if f, g  BV(p)[0, 2], then f  g  BV(p)[0, 2], and that on any 
locally compact Abelian group, a version of the convolution theorem holds. 
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I. Introduction 
In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two 

functions f and g, producing a third function that is typically viewed as a modified version of one of the original 

functions, giving the area overlap between the two functions as a function of the amount that one of the original 

functions is translated. Convolution is similar to cross-correlation. It has applications that include probability, 

statistics, computer vision, image and signal processing [9], electrical engineering and differential equations. 

The convolution can be defined for functions on groups other than Euclidean space. For example, periodic 

functions, such as the discrete-time Fourier transform, can be defined on a circle and convolved by periodic 
convolution. And discrete convolution can be defined for functions on the set of integers. Generalizations of 

convolution have applications in the field of numerical analysis and numerical linear algebra, and in the design 

and implementation of finite impulse response filters in signal processing. Computing the inverse of the 

convolution operation is known as deconvolution. 

According to origin and history of convolution [10], "Probably one of the first occurrences of the real 

convolution integral took place in the year 1754 when the mathematician Jean-le-Rond D’Alembert derived 

Taylor's expansion theorem on page 50 of Volume 1 of his book “Recherches sur differents points importants du 

systeme du monde”. 

Also, an expression of the type: 

  duuxguf )()(  

is used by Sylvestre Francois Lacroix on page 505 of his book entitled Treatise on differences and series, which 

is the last of 3 volumes of the encyclopedic series: “Traité du calcul différentiel et du calcul intégral”, Chez 

Courcier, Paris, 1797-1800 [14]. Soon thereafter, convolution operations appear in the works of Pierre Simon 

Laplace, Jean Baptiste Joseph Fourier, Simeon Denis Poisson, and others. The term itself did not come into wide 

use until the 1950s or 60s. Prior to that, it was sometimes known as faltung (which means folding in German), 

composition product, superposition integral, and Carson's integral. Yet it appears as early as 1903, though the 

definition is rather unfamiliar in older uses [1], [2]. 

The operation: 

 

t

dssts
0

,)()(   ,0  t  

is a particular case of composition products considered by the Italian mathematician Vito Volterra in 1913 [3]. 

In the investigation of convergence of Fourier series, Waterman introduced the class of functions of ΛBV in the 

early seventies. In 1980 Shiba [8] generalized this class. He introduced the class Λ𝐵𝑉(𝑝). In 2006, Vyas [12] 
show that the functions of generalized bounded variation inherit some properties of bounded variation under 

convolution. 

Our aim in this paper is to study and analyze the convolution algebra and then consider the functions of 

p – bounded variation under the same umbrella. This will guide us in our next article, to understand why the 
convolution produces the output of an LTI (Linear time-invariant) system, and why the behavior of a linear, 

continuous-time, time-invariant system with input signal x(t) and output signal y(t) is described by the 
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convolution integral [6], leading to the study of Linear time-invariant theory, commonly known as LTI system 

theory. 

 

II. Preliminary 
Definition 1. Given an interval 𝐼, a sequence of non-decreasing positive real numbers Λ =  𝜆𝑛 , (𝑛 = 1, 2, … ) 

such that 


1

1

n n
diverges and 1 ≤ 𝑝 < ∞. We say that 𝑓 ∈ Λ𝐵𝑉(p)(𝐼) 

(𝑡𝑕𝑎𝑡 𝑖𝑠 𝑓 𝑖𝑠 𝑜𝑓 𝑝 − Λ − 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝐼) if 

  𝑉Λ 𝑓, 𝑝, 𝐼 = sup{𝐼𝑛 } 𝑉Λ  𝐼𝑛  ,𝑓, 𝑝, 𝐼 < ∞, 

Where 𝑉Λ  𝐼𝑛  ,𝑓, 𝑝, 𝐼 =    𝑓 𝑎𝑛  −𝑓(𝑏𝑛 ) 𝑝

𝜆𝑛𝑛  
1/𝑝

, and {𝐼𝑛 } is a sequence of non-overlapping subintervals 𝐼𝑛 =

 𝑎𝑛 ,𝑏𝑛  ⊂ 𝐼 =  0,2𝜋 . With this metric as a function of the set, we defines a functional 𝑉∧𝑝
(⋅), given by 

  𝑉∧𝑝
 𝑓 1/𝑝 = sup    𝑓(𝐼𝑛 ) 𝑝

𝜆𝑛

∞
𝑛=1  

1/𝑝

< ∞, ∀ 𝑓 ∈ Λ𝐵𝑉(p). [7]. 

Note that if 𝑝 = 1 one get the class Λ𝐵𝑉(𝐼); if 𝜆𝑛 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, one gets the class 𝐵𝑉(p); if 𝑝 = 1 𝑎𝑛𝑑 𝜆𝑛 =
𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, one gets the class 𝐻𝐵𝑉(𝐼); if 𝑝 = 1 𝑎𝑛𝑑 𝜆𝑛 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, one gets the class 𝐵𝑉 𝐼 . 
Definition 2. For 𝑝 ≥ 0,   0 < 𝛼 ≤ 1, we say that 𝑓 ∈ 𝐿𝑖𝑝 𝛼, 𝑝  𝑜𝑣𝑒𝑟 𝐼 if  

   𝑇𝑦𝑓 − 𝑓 
𝑝 ,𝐼

= 0  𝑕 𝛼  𝑎𝑠 𝑕 → 0 

Where  (∙) 𝑝 ,I denotes the 𝐿𝑝  norm over 𝐼 𝑎𝑛𝑑 𝑇𝑕𝑓 𝑥 = 𝑓(𝑥 + 𝑕), [11]. It makes sense to consider the integral 

modulus of continuity 

  𝜔𝑝 𝛿, 𝑓 : = sup0≤𝑕≤𝛿    𝑓 𝑡 + 𝑕 − 𝑓(𝑡) 𝑝
1−𝑕

0
 

1/𝑝

𝑑𝑡 

For 0 ≤ 𝛿 ≤ 1. However, if 𝑓 is define on 𝑅 instead of [0, 2π] and if 𝑓 is 2𝜋 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐, it is convenient to 
modify the definition and put 

  𝜔𝑝 𝛿, 𝑓 : = sup0≤𝑕≤𝛿    𝑓 𝑡 + 𝑕 − 𝑓(𝑡) 𝑝
2𝜋

0
 

1/𝑝

𝑑𝑡 

Definition 3. Let 𝑓 be a 2𝜋 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓 is of Λ − bounded variation on [0, 2𝜋], then the Fourier 

transform of 𝑓 is given by 

F[𝑓(𝑥)]=  𝑓(𝑡)
2𝜋

0
𝑒−𝑖𝑡𝑥 𝑑𝑥 = 𝑓 𝑡 , 𝑡 ∈  0, 2𝜋 . [4] 

In Fourier analysis, for any 2π – periodic function 𝑓 𝑎𝑛𝑑 𝑔, 𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑔 is defined as follows: 

Definition 4. For any 𝑓, 𝑔 ∈ 𝐿1 0, 2𝜋 , 𝑓 ∗ 𝑔 is define as 

   𝑓 ∗ 𝑔  𝑥 = 1

2𝜋
 (𝑓 𝑥 − 𝑦 𝑔 𝑦 𝑑𝑦.

2𝜋

0
 [12] 

In view of the above definition, we state the convolution theorem as in theorem 1 below. The approach adapted 

in the formulation and proof of the theorem is in accordance with Dass, (2006) [5] Laplace transformation. 

Definition 5. For a positive integer r, we say that 𝑓 ∈ 𝑟 − 𝐵𝑉(𝐼) ( that is, 𝑓 is of bounded 𝑟𝑡𝑕- variation over 𝐼) 

if for arbitrary (𝑛 + 1) - points 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛  in 𝐼, in an arithmetic progression we have 

  𝑉𝑟 𝑓, 𝐼 = sup𝑛 𝑉𝑛
𝑟 𝑓, 𝐼 < ∞,   𝑤𝑕𝑒𝑟𝑒 sup𝑛 𝑉𝑛

𝑟 𝑓, 𝐼 =   ∆𝑟𝑓(𝑥𝑖) 
𝑛−𝑟
𝑖=0 , [12] 

In which ∆𝑓 𝑥𝑖 = 𝑓 𝑥𝑖+1 − 𝑓 𝑥𝑖  and for some 𝑘 ≥ 2 

  ∆𝑘𝑓 𝑥𝑖 = ∆𝑘−1𝑓 𝑥𝑖+1 − ∆𝑘−1𝑓 𝑥𝑖 , so that 

  ∆𝑟𝑓 𝑥𝑖 =   −1 𝑚 (𝑚
𝑟 )𝑓(𝑥𝑖+𝑟−𝑚 )𝑟

𝑚=0  

 

III. Algebraic Properties 
The convolution defines a product on the linear space of integrable functions. This product satisfies the 

following algebraic properties, which formally mean that the space of integrable functions with the product 

given by convolution is a commutative algebra without identity [13]. Other linear spaces of functions, such as 

the space of continuous functions of compact support, are closed under the convolution, and so also form 

commutative algebras. 

Commutativity: f  g = g  f 

Associativity: f  (g  h) = (f  g)  h 

Distributive: f  (g + h) = (f  g) + (f  h) 

Associativity with scalar multiplication: a(f  g) = (af )  g for any real (or complex) number a. 
No algebra of functions possesses an identity for the convolution. The lack of identity is typically not a major 

inconvenience since most collections of functions on which the convolution is performed can be convolved with 

a delta distribution, or, at the very least (as is the case of L1) admit approximations to the identity. The linear 

space of compactly supported distributions does, however, admit an identity under the convolution. Specifically, 

  f   = f 
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where δ is the delta distribution. 

Some distributions have an inverse element for the convolution, S(-1), which is defined by 

  S(-1)  S =  
The set of invertible distributions forms an Abelian group under the convolution. 

 

IV. Functions Of P – Bounded Variation 
Lemma 1. If 𝑓 ∈ 𝐿1 0, 2𝜋  𝑎𝑛𝑑 𝑔 ∈ 𝐿𝑝  0, 2𝜋   𝑝 ≥ 1 , 𝑡𝑕𝑒𝑛, 
   𝑇𝑕𝑓 ∗ 𝑔 − 𝑓 ∗ 𝑔 𝑝 ,[0,2𝜋] ≤  𝑓 1 𝑇𝑕𝑔 − 𝑔 𝑝 ,[𝑜 ,2𝜋]. [11] 

Proof: For any 𝑕 ∈ 𝐿𝑝  0, 2𝜋 , 𝑤𝑕𝑒𝑟𝑒 𝑞 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 1

𝑝
+

1

𝑞
= 1, from the Fubini – Tonelli theorem we get 

  1

2𝜋
  𝑇𝑕𝑓 ∗ 𝑔 𝑥 − 𝑓 ∗ 𝑔 𝑥  𝑕 𝑥 𝑑𝑥

2𝜋

0
  

  ≤ 1

2𝜋
  𝑕(𝑥) 

2𝜋

0
 1

2𝜋
  𝑓(𝑦)  (𝑇𝑕𝑔 − 𝑔) 𝑥 − 𝑦  𝑑𝑦

2𝜋

0
 𝑑𝑥  

  = 1

2𝜋
  𝑓(𝑦) 

2𝜋

0
 1

2𝜋
  𝑕(𝑥)  (𝑇𝑕𝑔 − 𝑔) 𝑥 − 𝑦  𝑑𝑥

2𝜋

0
 𝑑𝑦  

  =  𝑓 1 𝑕 𝑞 𝑇𝑕𝑔 − 𝑔 𝑝 , (by Holder’s inequality). 

Hence the result follows. 

Theorem 1. If the inverse Fourier transforms of two functions 𝑓 𝑥  𝑎𝑛𝑑 𝑔 𝑥  is 𝐹 𝑡  𝑎𝑛𝑑 𝐺(𝑡) respectively 

(that is 𝐹 𝑡 = 𝐹−1[𝑓 𝑥 ], 𝑎𝑛𝑑 𝐺 𝑡 = 𝐹−1[𝑔 𝑥 ]), then 

  𝐹−1 𝑓(𝑥)𝑔 𝑥  = 1

2𝜋
 𝐺 𝑡 − 𝑢 𝐹 𝑢 𝑑𝑢

𝑡

0
= 𝐹 ∗ 𝐺, 0 ≤ 𝑡 ≤ 2𝜋.        (1) 

Where 𝐹 ∗ 𝐺 is known as convolution or Faltung of F and G [5]. 

Proof: Our proof here uses Dass as a basis. From the conditions of the theorem we have;  𝐹 𝐹 𝑡  =
𝑓 𝑥  𝑎𝑛𝑑 𝐹 𝐺 𝑡  = 𝑔 𝑥 , therefore 

  𝑓 𝑥 𝑔 𝑥 = 𝐹 𝑓 𝑡  ∙ 𝐹 𝑔 𝑡  = 1

2𝜋
 𝐹 𝑧 𝑒−𝑖𝑥𝑧 𝑑𝑧

2𝜋

0
1

2𝜋
 𝐺 𝑦 𝑒−𝑖𝑥𝑦 𝑑𝑦

2𝜋

0
  

  =  𝑒−𝑖𝑥 𝑧+𝑦 𝐹 𝑧 𝐺 𝑦 𝑑𝑧𝑑𝑦
2𝜋

0
 

  =  𝑒−𝑖𝑥 𝑧+𝑦 𝐹 𝑧 𝐺 𝑦 𝑑𝑧𝑑𝑦 
 

[0,2𝜋]
           (2) 

Now we take the positive quadrant on the plane over which the double integration extends. However to 

transform the double integration from the region 𝑅(𝑥, 𝑦) to another, we consider 

𝑧 = 𝑤, 𝑦 = 𝑣 − 𝑤  
 

 

 

 

 

 

 

 

 
 

 

 

 

 

𝑤𝑕𝑒𝑛 𝑧 = 0, 𝑤 = 0, 𝑤𝑕𝑒𝑛 𝑧 = ∞,𝑤 = 0 𝑎𝑛𝑑 𝑤𝑕𝑒𝑛 𝑦 = 0, 𝑣 − 𝑤 = 0, 𝑦 = ∞,  𝑣 − 𝑤 = ∞. The Jacobian of 

the transformation is 

  
𝜕(𝑧 ,𝑦)

𝜕(𝑣,𝑤)
=  

𝜕𝑧

𝜕𝑣

𝜕𝑦

𝜕𝑣
𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

 =  0 1
1 −1

 = −1. 

Also given 𝑑𝑧𝑑𝑦 = 𝑑𝑣𝑑𝑤. Thus equation (1) becomes 

   𝑒−𝑖𝑥𝑣 𝐹 𝑤 𝐺 𝑣 − 𝑤 𝑑𝑣𝑑𝑤
 

[0,2𝜋]
=  𝑒−𝑖𝑥𝑣2𝜋

0
  𝐹 𝑤 𝐺 𝑣 − 𝑤 𝑑𝑤

𝑣

0
 𝑑𝑣 

On replacing the variables 𝑣    𝑏𝑦   𝑡    𝑎𝑛𝑑    𝑤   𝑏𝑦    𝑦  we have 

   𝑒−𝑖𝑥𝑡2𝜋

0
  𝐹 𝑦 𝐺 𝑡 − 𝑦 

𝑡

0
𝑑𝑦 𝑑𝑥 = 𝐹   𝐹 𝑦 𝐺 𝑥 − 𝑦 

𝑡

0
𝑑𝑦 = 𝐹[𝐹 ∗ 𝐺]  

Hence 

  𝑓 𝑥 𝑔 𝑥 = 𝐹 𝑓 𝑡  ∙ 𝐹 𝑔 𝑡  = 1

2𝜋
 𝐹 𝑡 − 𝑢 𝐺 𝑢 𝑑𝑢

2𝜋

0
= 𝐹[𝐹 ∗ 𝐺]. 

Remark: By lemma 1, for every sequence {𝐼𝑘}𝑘=1
2𝑛  of non overlapping sub-intervals 𝐼𝑘 =  𝑎𝑘𝑏𝑘  ⊂ 𝐼 = [0, 2𝜋], 

  𝐹 𝐹 ∗ 𝐺 = 1

2𝜋
  𝑔(𝑢)   

 𝑓 𝑏𝑘−𝑢 −𝑓(𝑎𝑘−𝑢 ) 

𝜆𝑘

2𝑛
𝑘=1  𝑑𝑢

2𝜋
0 , 0≤ 𝑡 ≤ 2𝜋 

y 

U(y) 0 

R 

x 

y 

w 

v - w 

0 
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  = 𝑉Λ(𝑓,  0,2𝜋 ) 𝑔 .  Hence 𝐹[𝐹 ∗ 𝐺] ∈ ⋀𝐵𝑉. 

Theorem 2: If 𝑓 𝑎𝑛𝑑 𝑔 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 Λ𝐵𝑉(𝑝) 0, 2𝜋  (𝑝 ≥ 1), 𝑡𝑕𝑒𝑛 𝑓 ∗ 𝑔 ∈ Λ𝐵𝑉(𝑝) 0, 2𝜋 , [12]. 

Proof: Since every function of Λ𝐵𝑉(𝑝) is bounded, from lemma 1, we get 

     𝑓 ∗ 𝑔 (𝐼𝑘 ) 𝑝𝑑𝑥
2𝜋

0
≤  𝑓 𝑝   𝑔(𝐼𝑘 ) 𝑝𝑑𝑥

2𝜋

0
 

for every sequence of non overlapping subintervals 𝐼𝑘 =  𝑎𝑘 , 𝑏𝑘 ⊂ 𝐼 =  0, 2𝜋 . Dividing both sides of the 

above equation by 𝜆𝑘  and performing summation from 𝑘 = 1 𝑡𝑜 ∞,𝑤𝑒 𝑔𝑒𝑡 

       𝑓∗𝑔 (𝐼𝑘 ) 
𝑝

𝜆𝑘

∞
1  𝑑𝑥

2𝜋

0
≤  𝑓 ∞

𝑝
    𝑔(𝐼𝑘 ) 

𝑝

𝜆𝑘

∞
𝑘=1  𝑑𝑥

2𝜋

0
  

  = 2𝜋𝑉Λ(𝑔, 𝑝,  𝐼𝑘  )  𝑓 ∞
𝑝

. 

Hence the result follows.  

Theorem 3: If 𝑓 ∈ 𝐿1 0, 2𝜋  𝑎𝑛𝑑 𝑔 ∈ 𝑟 − 𝐵𝑉 0,2𝜋 , 𝑡𝑕𝑒𝑛 𝑓 ∗ 𝑔 ∈ 𝑟 − 𝐵𝑉 0,2𝜋 , [12]. 

Proof: From the definition of convolution we get 

  ∆ 𝑓 ∗ 𝑔  𝑥 = 1

2𝜋
 𝑓 𝑦 ∆𝑔 𝑥−𝑦 𝑑𝑦 ,

2𝜋
0  

  ∆2 𝑓 ∗ 𝑔  𝑥 = 1

2𝜋
 𝑓 𝑦 ∆2𝑔 𝑥−𝑦 𝑑𝑦 ,

2𝜋
0  

Similarly, for any positive integer r, we have 

  ∆𝑟 𝑓 ∗ 𝑔  𝑥 = 1

2𝜋
 𝑓 𝑦 ∆𝑟𝑔 𝑥−𝑦 𝑑𝑦 ,

2𝜋
0  

Thus for arbitrary (𝑛 + 1) – points; 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛  in 𝐼 = [0, 2𝜋], in an arithmetic progression we get 

   ∆𝑟 𝑓 ∗ 𝑔  𝑥𝑘  ≤ 1

2𝜋
  𝑓 𝑦   ∆𝑟𝑔 𝑥𝑘−𝑦  𝑑𝑦 ,

2𝜋
0   ∀𝑘 = 0, 𝑛 − 𝑟. 

By taking  𝑘 = 0, 1, 2, …  , 𝑛 − 𝑟, 𝑤𝑒 𝑔𝑒𝑡 

    ∆𝑟 𝑓 ∗ 𝑔  𝑥𝑘  
𝑛−𝑟
𝑘=0 ≤ 1

2𝜋
  𝑓 𝑦     ∆𝑟𝑔 𝑥𝑘−𝑦  𝑛−𝑟

𝑘=0  𝑑𝑦 ,
2𝜋

0          (3) 

    ≤ 𝑉𝑟(𝑔,  0,2𝜋 ) 𝑓 1 

Remark 1. By theorem 1, we see that the operation 𝑓 ∗ 𝑔 is commutative thus 

  𝑓 ∗ 𝑔 = 1

2𝜋
 (𝑓 𝑡 − 𝑢 𝑔 𝑢 𝑑𝑢

2𝜋

0
, 

when 𝑡 − 𝑢 = 𝑧 we get 

  𝑓 ∗ 𝑔 = 1

2𝜋
 (𝑓 𝑧 𝑔 𝑡 − 𝑧 𝑑𝑧

2𝜋

0
= 1

2𝜋
 (𝑔 𝑡 − 𝑧 𝑓 𝑧 𝑑𝑧

2𝜋

0
= 𝑔 ∗ 𝑓  

Moreover this theorem may best be restated as “if 𝑓 𝑥  𝑎𝑛𝑑 𝑔 𝑥  are the Fourier transforms of two functions 

𝐹 𝑡  𝑎𝑛𝑑 𝐺 𝑡  that are sectionally continuous on each interval 0 ≤ 𝑡 ≤ 𝑢, then the transform of the convolution 

𝐹 𝑡 ∗ 𝐺 𝑡  exist and it is 𝑓 𝑥 ∙ 𝑔 𝑥 ”. 

Remark 2. Dividing both sides of equation 3 by 𝜆𝑘  we get 

    ∆𝑟  𝑓∗𝑔  𝑥𝑘  

𝜆𝑘

𝑛−𝑟
𝑘=0 ≤ 1

2𝜋
  𝑓 𝑦    

 ∆𝑟𝑔 𝑥𝑘−𝑦  

𝜆𝑘

𝑛−𝑟
𝑘=0  𝑑𝑦 ,

2𝜋
0  

    ≤ 𝑉Λ
𝑟(𝑔, [0, 2𝜋] 𝑓 1 

Hence we say that 𝑓 ∗ 𝑔 is also of  Λ − bounded variation. 

 

V. Convolutions On Groups 
If G is a suitable group endowed with a measure λ, and if f and g are real or complex valued integrable 

functions on G, then we can define their convolution by 

  


G
ydxygyfxgf )()()())(( 1  . 

In typical cases of interest G is a locally compact Hausdorff topological group and λ is a (left-) Haar measure. In 

that case, unless G is unimodular, the convolution defined in this way is not the same as 

  
 )()()( 1 ydygxyf  . 

The preference of one over the other is made so that convolution with a fixed function g commutes with left 

translation in the group: 

  )()()( gLfgfLgfL hhh  . 

Furthermore, the convention is also required for consistency with the definition of the convolution of measures 

given below. However, with a right instead of a left Haar measure, the latter integral is preferred over the 

former. 

On locally compact Abelian groups, a version of the convolution theorem holds: the Fourier transform of a 

convolution is the point-wise product of the Fourier transforms. The circle group T with the Lebesgue measure 

is an immediate example. For a fixed g in L1(T), we have the following familiar operator acting on the Hilbert 

space L2(T): 

   
T

dyyxgyfxTf )()(
2

1
)(


 

The operator T is compact. A direct calculation shows that its adjoint T* is convolution with )( yg  . 
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By the commutativity property cited above, T is normal, i.e. T*T = TT*. Also, T commutes with the translation 

operators. Consider the family S of operators consisting of all such convolutions and the translation operators. 

Then S is a commuting family of normal operators. According to spectral theory, there exists an orthonormal 

basis {hk} that simultaneously diagonalizes S. This characterizes convolutions on the circle. Specifically, we 

have 

   kexh ikx

k ,)( , 

which are precisely the characters of T. Each convolution is a compact multiplication operator in this basis. This 

can be viewed as a version of the convolution theorem discussed above. 

A discrete example is a finite cyclic group of order n. Convolution operators are here represented by circulant 

matrices, and can be diagonalized by the discrete Fourier transform. 

A similar result holds for compact groups (not necessarily abelian): the matrix coefficients of finite-dimensional 

unitary representations form an orthonormal basis in L2 by the Peter-Weyl theorem, and an analog of the 

convolution theorem continues to hold, along with many other aspects of harmonic analysis that depend on the 

Fourier transform. 

 

VI. Conclusion 

In this paper we examine the notion of functions of p-bounded variation under well known 

convolution operator. Some selected properties of functions of p-bounded variation are shown to inherit the 
properties of the parents function. Perhaps the most important and interesting property is the fact that if f and g 

are two functions of p-bounded variation (i.e. f, g BV(p) [0, 2]), then f  g also belong to the same space. 

Another interesting issue is that the functions of p-bounded variation are shown to be commutative under the 
convolution operator. The convolution theory is best stated in a simpler and understanding language for 

interesting readers. i.e. If f(x) and g(x) are the Fourier transforms of two functions F(t) and G(t) and are 

sectionally continuous on each interval 0tu, then the transform of the convolution F(t)  G(t) exist and is 

f(x)g(x). Furthermore, on any locally compact Abelian group, a version of the convolution theorem holds. 
Note that we have not completely extracts the important facts about the properties of the convolution operator. 

Any of the properties can be explored in more depth by any interesting reader, most especially; there are other 

properties which are not considered in this paper due to time space. 
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