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Abstract: The main aim of this article is to present the Spectral theory of self-adjoint operators on Hilbert 

space and to describe its applications in the development of Quantum mechanics. Since in Quantum mechanics, 

observables correspond to self-adjoint operators, to achieve our aim, we employed the idea of symmetric 

operators in Hilbert space. We see that there is a bijection between symmetric extensions of an operator and 

isometric extensions of its Cayley transform. The resolvent (a) is invertible, which is the generalization of the 
theory of eigenvalues of a matrix, that is, the set of all eigenvalues of an operator is called the spectrum of the 

operator, and more importantly, the Hermitian operator. Finally, we showed how to determine the energy level 

of the atom of an element using some derived equations. 
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I. Introduction 
In mathematics, on a finite-dimensional inner product space, a self-adjoint operator is an operator that 

is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is 

equal to its own conjugate transpose. By the finite-dimensional spectral theorem, such operators can be 

associated with an orthonormal basis of the underlying space in which the operator is represented as a diagonal 

matrix with entries in , the real. In this article, we consider the algebra and importance of Self-adjoint 
operators in quantum mechanics and their formulation, in which physical observables such as position, 

momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space. Of 

particular significance is the Hamiltonian 

 2
2

2


m
VH


         (1) 

which as an observable, corresponds to the total energy of a particle of mass m in a real potential field V. 
Differential operators are important classes of unbounded operators. 

The structure of self-adjoint operators on infinite-dimensional Hilbert spaces essentially resemble the finite-

dimensional case, that is to say, operators are self-adjoint if and only if they are unitarily equivalent to real-

valued multiplication operators. With suitable modifications, this result can be extended to possibly unbounded 

operators on infinite-dimensional spaces. Since an everywhere defined self-adjoint operator is necessarily 

bounded, one needs to be more attentive to the domain issue in the unbounded case. 

Also, the absolutely continuous spectrum corresponds to the Free State while the pure points correspond to 

bounded state (take the momentum and position operator, say). Hence in order to appreciate and apply spectral 

theory in quantum mechanical setting, we must turn to spectral theory for unbounded operators [2].  

The spectral theory of linear operators in Hilbert space is one of the most important tools in the mathematical 

foundation of quantum mechanics; in fact linear operators and quantum mechanics have had a symbiotic 

relationship. Quantum mechanics was the profound revolution in Physics. Some very simple systems present 
nontrivial questions whose answers need a mathematical approach. The theory of linear operators and their 

spectra constitute a wild field [19]. A linear operator is an operator such that 

(i) The domain 𝒟(𝑇) of T is a vector space and the range ℛ 𝑇 lies in a vector space over the same 

field, 

(ii) For all 𝑥,𝑦 ∈ 𝒟(𝑇) and scalar 𝛼,𝑇 𝑥 + 𝑦 = 𝑇(𝑥) + 𝑇(𝑦) and 𝑇 𝛼𝑥 = 𝛼𝑇(𝑥). 

The first aim in this article is to present the spectral theory of self- adjoint operators on Hilbert space and 

secondly, show its application in the development of parts of quantum mechanics such as Schrödinger equation, 

and lastly, to strive to present some examples illustrating concepts and build up confidence with the methods 

employed. The existence of quantum mechanics is to be equivalent to the self- adjointness of the Hamiltonian 

operator. In fact, in quantum mechanics, every physical observables are represented by self- adjoint operators on 
Hilbert space, H ([15]; [12] and [18]). The idea is to complement a text that emphasizes mathematics with 

additional rigorous approaches to some standard quantum concepts; e.g., why the quantum observables are 

represented by self-adjoint operators instead of just Hermitian ones. 
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II. Symmetric Operators 
A partially defined linear operator A on a Hilbert space H is called symmetric if 

 AyxyAx ||           (2) 

for all elements x and y in the domain of A. More generally, a partially defined linear operator A from a 

topological vector space E into its continuous dual space E∗ is said to be symmetric if (2) is satisfied for all 

elements x and y in the domain of A. This usage is fairly standard in the functional analysis literature. 
A symmetric everywhere defined operator is self-adjoint. By the Hellinger-Toeplitz theorem, a symmetric 

everywhere defined operator is also bounded. Bounded symmetric operators are also called Hermitian. 

The previous definition agrees with the one for matrices given in the introduction to this article, if we take as H 

the Hilbert space C
n with the standard dot product and interpret a square matrix as a linear operator on this 

Hilbert space. It is however much more general as there are important infinite-dimensional Hilbert spaces. 

The spectrum of any bounded symmetric operator is real; in particular all its eigenvalues are real, although a 

symmetric operator may have no eigenvalues. 

 

III. Self-Adjoint Operators 
Given a densely defined linear operator A on H, its adjoint A* is defined as follows: 

 The domain of A* consists of vectors x in H such that Ayxy |  (which is a densely defined 

linear map) is a continuous linear functional. By continuity and density of the domain of A, it extends 

to a unique continuous linear functional on all of H. 

 By the Riesz representation theorem for linear functionals, if x is in the domain of A*, there is a unique 

vector z in H such that domAyyzAyx  || . 

This vector z is defined to be A* x. It can be shown that the dependence of z on x is linear. 

Notice that it is the denseness of the domain of the operator, along with the uniqueness part of Riesz 

representation that ensures the adjoint operator is well defined. 

A result of Hellinger-Toeplitz type says that an operator having an everywhere defined bounded adjoint is 

bounded. The condition for a linear operator on a Hilbert space to be self-adjoint is stronger than to be 

symmetric. 

For any densely defined operator A on Hilbert space, one can define its adjoint operator A*. For a symmetric 

operator A, the domain of the operator A* contains the domain of the operator A, and the restriction of the 

operator A* on the domain of A coincides with the operator A, i.e. 
 AA , in other words A* is an extension 

of A. For a self-adjoint operator A, the domain of A* is the same as the domain of A, and A=A*. 

 

IV. Extensions Of Symmetric Operators 
One may ask a question that: if an operator A on a Hilbert space H is symmetric, does it have self-

adjoint extensions? The answer is provided by the Cayley transform of a self-adjoint operator and the deficiency 

indices. In the symmetric case, the closedness requirement poses no obstacles, since it is known that all 

symmetric operators are closable. Below are some facts about self-adjoint extensions. 

 

Theorem 1: Suppose A is a symmetric operator. Then there is a unique partially defined linear operator 

 )()(:)( iAraniAranAW   

such that 

 )(;))(( AdomxixAxixAxAW   

W(A) is isometric on its domain. Moreover, the range of 1 − W(A) is dense in H [11]. 

Conversely, given any partially defined operator U which is isometric on its domain (which is not necessarily 

closed) and such that 1 − U is dense, there is a (unique) operator S(U) 

 )1()1(:)( UranUranUS   

such that 

 )()())(( UdomxUxxiUxxUS   

The operator S(U) is densely defined and symmetric. The mappings W and S are inverses of each other. The 

mapping W is called the Cayley transform. It associates a partially defined isometry to any symmetric densely 

defined operator. Note that the mappings W and S are monotone: This means that if B is a symmetric operator 

that extends the densely defined symmetric operator A, then W(B) extends W(A), and similarly for S. 

Theorem 2: A necessary and sufficient condition for A to be self-adjoint is that its Cayley transform W(A) be 

unitary [11]. 
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This immediately gives us a necessary and sufficient condition for A to have a self-adjoint extension, as follows: 

Theorem 3: A necessary and sufficient condition for A to have a self-adjoint extension is that W(A) have a 

unitary extension [11]. 

Note that a partially defined isometric operator V on a Hilbert space H has a unique isometric extension to the 

norm closure of dom(V), while a partially defined isometric operator with closed domain is called a partial 

isometry. 

Theorem 4: A partial isometry V has a unitary extension if and only if the deficiency indices are identical. 
Moreover, V has a unique unitary extension if and only if both deficiency indices are zero [11]. 

We see that there is a bijection between symmetric extensions of an operator and isometric extensions of its 

Cayley transform. An operator which has a unique self-adjoint extension is said to be essentially self-adjoint. 

Such operators have a well-defined Borel functional calculus. Symmetric operators which are not essentially 

self-adjoint may still have a canonical self-adjoint extension. Such is the case for non-negative symmetric 

operators (or more generally, operators which are bounded below). These operators always have a canonically 

defined Friedrichs extension and for these operators we can define a canonical functional calculus. Many 

operators that occur in analysis are bounded below (such as the negative of the Laplacian operator), so the issue 

of essential adjointness for these operators is less critical. 

 

V. Quantum Mechanics 
Quantum mechanics is the branch of mechanics (science of movement and force) that deals with the 

mathematical description of the motion on interaction with subatomic particles. It concerns with the description 

of motion and energy level of microscopic particles such as atoms, molecules, etc. Here, as in any physical 

theory, we have to consider only those quantities which may be measured. These physical quantities whose 

values are found by means of an experiment (or measured) are fundamental concept of quantum mechanics 

called the observables. It turns out to be that, in quantum mechanics it is impossible, in general, to predict 

exactly the result of measurement [14]. This is a real variable and, in fact, quantum mechanics studies laws of 
distribution of such variables. Among all observables, there is one of particular importance: the energy. The 

corresponding operator is called the Hamiltonian, denoted by H or Schrӧdinger operator 

)(
)(

tH
dt

td
i 


  

where H  is the Hamiltonian and   is the Planck’s constant. Also see (1) above.  

 

VI. Self-Adjoint Extensions In Quantum Mechanics 
In quantum mechanics, observables correspond to self-adjoint operators. By Stone’s theorem on one-

parameter unitary groups, self-adjoint operators are precisely the infinitesimal generators of unitary groups of 

time evolution operators. However, many physical problems are formulated as a time-evolution equation 

involving differential operators for which the Hamiltonian is only symmetric. In such cases, either the 

Hamiltonian is essentially self-adjoint, in which case the physical problem has unique solutions or one attempts 
to find self-adjoint extensions of the Hamiltonian corresponding to different types of boundary conditions or 

conditions at infinity. 

Example 1. The one-dimensional Schrödinger operator with the potential 

 
)1()( xxV   

defined initially on smooth compactly supported functions, is essentially self-adjoint (that is, has a self-adjoint 

closure) for 20   but not for 2  [7]. 

Example 2. There is no self-adjoint momentum operator P for a particle moving on a half-line. Nevertheless, 

the Hamiltonian P2 of a "free" particle on a half-line has several self-adjoint extensions corresponding to 

different types of boundary conditions. Physically, these boundary conditions are related to reflections of the 

particle at the origin [10]. 

 

VII. Spectral Theory 
In mathematics, spectral theory is an inclusive term for theories extending the eigenvalues and 

eigenvectors of a single square matrix to a much broader theory of the structure of operators in a variety of 

mathematical spaces [1]. It is a result of studies of linear algebra and the solution of systems of linear equations 

and their generalizations [20]. The spectral theory is connected to that of analytic function because the spectral 

properties of an operator are related to analytic functions of the spectral parameter ([3] and [5]). 

The starting point of the quantum mechanical formalism is the Hilbert space. In mathematical concepts, it is a 

space in the sense that it is a complex vector space which is endowed by an inner or scalar product. In quantum 
mechanics, every physical observable can be  described by a self-adjoint operator- an infinite dimensional 
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symmetric matrix [(Tx,y)]= (x,Ty). For example, -∆ is a self-adjoint operator in L2 (d) when defined in an 
appropriate domain. In quantum mechanics, it corresponds to a free particle (just travelling in space). 

Furthermore, the position of a particle is described by a wave function ϕ(x, t)   L2 (d). The physical meaning 

of the wavefunction is that the probability to find it in a region     at time t is equal to  𝑄(𝑥, 𝑡) 𝑑𝑥. The space 

of Cn of all n-tuple of complex numbers becomes a Hilbert space with inner product. A further requirement in 

the definition of a Hilbert space is that every Cauchy sequence must be convergent, that is, the space is 

complete. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-

like behaviour and interactions of energy and matter is based on the postulate that the phase space is a Hilbert 

space H with the additional postulates that: 

(i) Only vectors of norm 1 corresponds to physical states; 

(ii) Vectors differing by a phase, i.e., by a complex number of modulus 1, correspond to the same 

physical state. In other word, 𝜓 ∈ 𝐻 and 𝑧𝜓 with 𝑧 ∈ 𝐶 and  𝑧 = 1 give the same state [12]. 

 

VIII. Operators On Hilbert Spaces 
The important operators on Hilbert spaces are bounded and unbounded operators. For the purpose of 

this article much emphasis is given to the unbounded operators with little to the bounded operators. This is 

because the observables that constitute quantum mechanics are unbounded operators. 

 

8.1 Bounded operators. The operator T is said to be bounded if there is a real number 𝑐 such that for all 

𝑥 ∈ 𝒟(𝑇)   𝑇𝑥 ≤ 𝑐 𝑥 , otherwise unbounded, where 𝑇: 𝒟(𝑇) → 𝑌 is a linear operator, with 𝒟(𝑇) ⊂ 𝑋 and X 
and Y are normed spaces [6]. 

 

8.2 Unbounded operators. Unbounded operators are also tractable in Hilbert spaces, and have important 

applications to quantum mechanics. An unbounded operator T on a Hilbert space H is defined as a linear 

operator whose domain 𝒟(𝑇) is a linear subspace of H. Often the domain 𝒟(𝑇) is a dense subspace of H, in 

which case T is known as a densely defined operator. Self- adjoint unbounded operators play the role of the 

observables in the mathematical formulation of quantum mechanics. Examples of self- adjoint unbounded 

operators on the Hilbert space L2(R) are: 

(i) A suitable extension of the differential operator:  𝐴𝑓 𝑓 𝑥 = 𝑖
𝑑

𝑑𝑥
𝑓(𝑥), where 𝑖 is the imaginary unit and 𝑓 is 

a differentiable function of compact support. 

(ii) The multiplication- by-x operator:  𝐵𝑓  𝑥 = 𝑥𝑓(𝑥). 

These correspond to the momentum and position observables respectively. 

Unbounded linear operators occur in many applications notably in connection with differential equations and in 
quantum mechanics. In fact, the theory of unbounded operators was stimulated by an attempt to put quantum 

mechanics on a rigorous mathematical foundation [9]. 

 

IX. Resolvent And Spectrum 
Let 𝑎: 𝐷(𝑎) → 𝐻 be an (possibly unbounded) operator on a Hilbert space. The resolvent 𝜌(𝑎) is the set 

of 𝑧 ∈ 𝐶 for which 𝑎 − 𝑧: 𝐷(𝑎) → 𝐻 is injective and surjective (i.e., invertible). The spectrum 𝜎 𝑎 ≔ 𝐶
𝜌(𝑎) . 

The theory of the spectrum of a closed operator on a Hilbert space (which may be bounded or unbounded) is a 

generalization of the theory of eigenvalues of a matrix. This statement is supported by the following theorem: 

Theorem 5: (Spectrum Closed) The resolvent set )(T of a bounded linear operator T on a complex plane X is 

open. Hence the spectrum )(T is closed [6].  

Proof:  If )(T  = 0, then it is close. Let )(T  ≠ 0. For a fixed point )(0 T  and λ C , we have  

IITIT )( 00    

           =  1

0)00 ))(()(   TIIT  

Denoting the operator in the bracket  ...  by V we can write this in the form VTT
0    where  

V =
0

)( 0  RI                                                                     (3)                                                                                                   

Since )(0 T  and T is bounded, it implies that 
0

R = ),(
1

0
XXBT 



        

Now we show that V has inverse 
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  








 
0 0

00

1

00
)()(

j j

jjj
RRV                                                           

In B(X, X) for all  such that 1)(
00   R  that is  

0

1
0




R

                      (4) 

Since ),(
00

1
XXBRT 



 . We see from this and (3) that for every  satisfying (4) the operator T  has 

an inverse  

00

111
)(  RVVTTR 

  

Hence (4) represents a neighbourhood  0  consisting of regular value  of T. Since )(0 T  was arbitrary, 

)(T is open so that its complement )()( TCT    is closed. 

Theorem 6: (Eigenvalue , Eigenvector) Let T :H H be a bounded self – adjoint operator on a Hilbert  space 

H; then 

a. all eigenvalues are real; 

b. eigenvectors corresponding to different eigenvalues    are orthogonal [4]. 

Proof: 

a. Let   be any eigenvalue of T and x corresponding eigenvector. Then x ≠0 and Tx =  x. Using self-

adjointness of T, we obtained xxxxxx ,,,


  . Hence 0,
2
 xxx , since x ≠0 and 

dividing both sides by xx, gives .
_

   Hence  is real.   

b. Let   and µ be eigenvalues of T and let x and y be corresponding eigenvectors. Then Tx =  x and Ty = µy 

since T is self-adjoint and µ is real.  

yxyxTyxyTxyxyx ,,,,,,    

Since  ≠ µ we must have 0, yx  which means orthogonality of x and y. 

 

X. The Time-Independent Schrödinger Equattion 
Spectral theory played a great role in the separation of space and time in Schrӧdinger equation of 

quantum mechanics through the derivation of (time-independent) Schrӧdinger equation  [17]. We use the 

analogy between light waves and de Broglie’s matter waves for the derivation of the equation. This is first 

started with the one- dimensional wave equation 

2

2

22

2 1

tVx 






 
                                                                                                            (5) 

This equation is used for investigating refraction, interference and other more subtle optical phenomena in 

quantum mechanics. By introducing the separation of variables )()(),( tfxtx   , we have 

2

2

22

2 )(
)(

1)(
)(

dt

tfd
x

Vdx

xd
tf 


 . 

If we introduce one of the standard wave equation solution for )(tf , such as 
tie 

, we have 

)(
)(

2

2

2

2

x
Vdx

xd


 
                                                                                                    (6) 

We now have an ordinary differential equation describing the spatial amplitude of the matter wave as a function 

of position. The energy of a particle is the sum of kinetic and potential parts )(
2

2

xV
m

p
E  , which can be 

solved for the momentum p to obtain     2
1

)(2 xVEmp 
. Now we can use the de Broglie formula to get 

the expression for the wavelength 
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   .2
1

)(2 xVEm

h

p

h


 . 

The term 
2

2

V


 in (6) can be rewritten in terms of , that is, if we recall that V 2  and vV   then 

 
22

2

2

22

2

2 )(244



xVEm

V

V

V







. 

When this result is substituted in (6), we obtain the famous time-independent Schrӧdinger equation  

  0)()(
2)(

22

2

 xxVE
m

dx

xd





       (7) 

This is almost always written in the form 

)()(
)(

2 2

22

xExV
dx

xd

m





 
       (8) 

This single particle one-dimensional equation can easily be restricted to the case of three- dimensional, where it 

becomes 

)()()()(
2

2
2

rErrVx
m

 


       (9) 

10.1 The Total Energy Of Hydrogen Atom: As explained earlier by [16], hydrogen atom consists of nucleus 

with positive charge +ze, atomic number z and a single electron. The potential energy of a two- particle system 

with charges q1 and q2 is given by 

 
r

qq

E
V 21

04

1


  

Where, r, is the distance between the particles. For the two-particle system of a hydrogen atom, where q1=+e 
and q2=-e, we can write the potential energy as 

 
r

e

Er

ee

E
V

2

00 4

1))((

4

1





         (10) 

which is the potential energy function of hydrogen atom.  

To find the energies of the quantum states of hydrogen atom, we must solve Schrӧdinger’s equation with (10) 

substituted for V in (7) or (8). However, because the electron in the hydrogen atom is trapped in a three- 

dimensional well, we must use a three-dimensional form of Schrӧdinger equation, i.e. (9). Solving the equation 

reveals that the energies of the electron quantum states of hydrogen atoms are given by 

,...2,1,
1

8 22

0

4

 n
nhE

me
En           (11) 

This is the energy an electron of hydrogen atom can have when an electron is trapped by it. Energy level 

diagram can be drawn for every atom. That for hydrogen atom is shown by [8]. In this case the lowest level has 

energy -13.6eV and is the one normally occupied by its single electron. Above this state are the excited states to 

which the hydrogen atom may raise by absorbing the correct amount of energy. If the energy absorbed is 

sufficient to allow the electron to escape from the atom, the latter becomes ionized; for hydrogen the ionization 

energy is 13.6eV. 

 

XI. Discussion 
Several importance of self-adjoint operators follow from our definition. First of all, the eigenvalues of 

self-adjoint operator T  are real, as indicated by theorem 6 and its prove, which tells us that the eigenvalues of T 

corresponding to different eigenvectors are orthogonal. The crucial features of spectral theory are the 

eigenvalues and eigenvectors which are solutions to some operators. The set of all eigenvalues of an operator is 
called the spectrum of the operator. The important types of operators in quantum mechanics are Hermitian (self-

adjoint) operators. They are of paramount important in quantum mechanics because an observable such as 

momentum is represented by a Hermitian operator and the possible results of the measurement of this 

observable are the eigenvalues of the operator (i.e., the eigenvalues are real since the operators are Hermitian). 

Some formulae for finding the energy of hydrogen atom were derived which can be applied in the calculation of 

the energy levels in the atom. For instance, to determine the energy of an electron in the ground state of 
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hydrogen atom, giving the following information as demonstrated by [16], i.e. 
2212

0 /1085.8 NMCE  , 

kgm 31101.9  , Jsh 34106.6  , Ce 19106.1  , we have, by direct substitution in equation 11 

above with n = 1, 

 
J

MNC

Ckg
E 18

234222212

41931

1 1017.2
)1063.6()1()./(1085.88

)106.1)(101.9( 









 .

 

The energy levels can be calculated for different elements. The energy of an atom when it is in the nth state can 

be found with the help of the time- independent Schrödinger equation in three-dimensional space. For a nucleus 

with charge eZ
 
orbited by a single electron, the corresponding relations are 

))(0053.0(
2

z

n
nmrn   and  .

6.13
2

2

eV
n

Z
En


              (12) 

Wave mechanics permits the electron in an atom to have only certain energy values. These values are called the 

energy levels of the atom. 

 

XII. Conclusion 
Spectral theory is an important tool in the field of sciences, particularly in Quantum mechanics. The 

operators in quantum mechanics were described using spectral theory, where the spectral theory simplified the 

derivation of time-independent Schrödinger equation. We have seen some applications of Spectral theory in 

finding the energy level of an atom of hydrogen. The equations used in finding the energy level can always be 

used for all elements. The calculation of energy level of an element can always be achieved by any of (7), (8) or 

(9). And lastly, quantum mechanics depend on the spectral theory of Hilbert space such as self-adjoint 

operators; since any observable (e.g. energy, position and momentum) is represented by a Hermitian operator 

and eigenvalues are the possible results of the momentum of these observables. The eigenvalues are real since 

the operator is Hermitian. 
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