The General formula to find the sum of first $\mathbf{n} \mathbf{K}^{\text {th }}$ Dimensional \mathbf{S} sided polygonal numbers and a simple way to find the n-th term of polynomial sequences

Arjun. K
$V^{\text {th }}$ Semester,B.Sc Physics (Student), PTM Government College Perinthalmanna, University of Calicut, Kerala

Abstract: Here a particular method is made to generate a A Single Formula to find the $n^{\text {th }}$ term and sum of n terms of first $n K^{\text {th }}$ dimensional S sided Polygonal numbers.
Keywords: Dimensional Polygonal Numbers, Polygonal Numbers,Square Numbers, Triangular Numbers, 3Dimensional Polygonal Numbers,

I. Introduction

In mathematics, a polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. The dots were thought of as alphas (units).

A triangular number or triangle number, numbers the objects that can form an equilateral triangle. The $\mathrm{n}^{\text {th }}$ term of Triangle number is the number of dots in a triangle with n dots on a side The sequence of triangular numbers are $1,3,6,10,15,21,28,36,45,55, \ldots$.

A Square number, numbers the objects that can form a square. The $\mathrm{n}^{\text {th }}$ square number is the number of dots in a square with n dots on a side. $1,4,9,16,25,36,49,64,81 \ldots$.

A Pentagonal number, numbers the objects that can form a regular pentagon. The $\mathrm{n}^{\text {th }}$ pentagonal number is the number of dots in a pentagon with n dots on a side. $1,5,12,22,35,51,70,92 \ldots$. Etc

3Dimension: A tetrahedral number ,or triangular pyramidal number, is a number that represents pyramid with triangular base and three sides, called tetrahedron. The $\mathrm{n}^{\text {th }}$ term of tetrahedral number is the sum of the first n triangular numbers. $1,4,10,20,35,56,84,120,165, \ldots$.

A Square pyramidal number, is a number that represents a pyramid with a square base and 4 sides. The $\mathrm{n}^{\text {th }}$ term of Square pyramidal number is the sum of the first n Square numbers. $1,5,14,30,55,91,140,204 \ldots$. Etc

4Dimension: The $\mathrm{n}^{\text {th }}$ term of 4D triangular number is the sum of the first n triangular pyramidal numbers. 1,5,15,35....
The $\mathrm{n}^{\text {th }}$ term of 4D square number is the sum of the first n square pyramidal numbers. $1,6,20,50 \ldots$.
The $\mathrm{n}^{\text {th }}$ term of 4D S-gonal number is the sum of the first n S-gonal pyramidal numbers. Etc
5Dimension: The $\mathrm{n}^{\text {th }}$ term of 5 D triangular number is the sum of the first n 4 D triangular numbers. $1,6,21,56 \ldots$ The $\mathrm{n}^{\text {th }}$ term of 5 D square number is the sum of the first n 4 D square numbers. 1,7,27,77.....
The $\mathrm{n}^{\text {th }}$ term of 5D S-gonal number is the sum of the first n 4D S-gonal numbers.
The $\mathbf{n}^{\text {th }}$ term of KD S-gonal numbers is the sum of the first $\mathbf{n}(\mathbf{k}-1)$ D S-gonal numbers. ,.
Here I am going to introduce a new method, Using this method we can find the $\mathrm{n}^{\text {th }}$ term and sum of n terms of any different kinds of polynomial sequences.
It is worth noting that using this method we can invent The General Formula to find the $\mathrm{k}^{\text {th }}$ Dimensional S sided Polygonal numbers $n^{\text {th }}$ term and Sum of n terms
This is a formula generated by myself in the above manner

II. The general method to find the $n^{\text {th }}$ term and sum of n terms of any polynomial sequences using Polynomial Difference Theorem

Polynomial Difference Theorem

Suppose the $n^{\text {th }}$ term of a sequence is a polynomial in n of degree m i.e. $p(n)=a_{1} n^{m}+a_{2} n^{m-1}+a_{3} n^{m-2}+a_{4} n^{m-3}+$ $\ldots . .+a_{m+1}$
Then its $\mathrm{m}^{\text {th }}$ difference will be equal and $(\mathrm{m}+1)^{\text {th }}$ difference will be zero.

2.1 Case1:- (When m=1)

Consider a polynomial sequence of power 1, i.e. $p(n)=a n+b$
First term $=p(1)=a+b$
Second term $=P(2)=2 a+b$

The General formula to find the sum of first $n K^{\text {th }}$ Dimensional S sided polygonal numbers and a
Third term $=p(3)=3 a+b$

	First Term P (1)	Second Term P(2)	Third Term P(3)
	$\mathrm{a}+\mathrm{b}$	$2 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$
First Difference	a	a	
Second Difference	0		

2.2 Case2:- (When m=2)

Consider a polynomial sequence of power 2, i.e. $p(n)=a^{2}+b n+c$
First term $=p(1)=a+b+c$
Second term $=P(2)=4 a+2 b+c$
Third term $=p(3)=9 a+3 b+c$
Fourth term $=p(4)=16 a+4 b+c$

	First Term P(1)	Second Term P(2)	Third Term P(3)	Fourth Term $\mathrm{P}(4)$
	$\mathrm{a}+\mathrm{b}+\mathrm{c}$	$4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}$	$9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}$	$16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}$
First Difference	$3 \mathrm{a}+\mathrm{b}$	$5 \mathrm{a}+\mathrm{b}$	$7 \mathrm{a}+\mathrm{b}$	
Second Difference	2 a	2 a		
Third Difference	0			

2.3 Case3:- (When m=3)

Consider a polynomial sequence of power 3, i.e. $p(n)=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$
First term $=p(1)=a+b+c+d$
Second term $=P(2)=8 a+4 b+2 c+d$
Third term $=p(3)=27 a+9 b+3 c+d$
Fourth term $=p(4)=64 a+16 b+4 c+d$
Fifth term $=p(5)=125 a+25 b+5 c+d$

	$\mathrm{F}_{\text {irst Term }} \mathrm{P}(1)$	$S_{\text {econd Term }} \mathrm{P}(2)$	$\mathrm{T}_{\text {hird Term }} \mathrm{P}(3)$	$\mathrm{F}_{\text {ourth Term }} \mathrm{P}(4)$	$\mathrm{F}_{\text {ifth Term }} P(5)$
	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$	$8 \mathrm{a}+4 \mathrm{~b}+2 \mathrm{c}+\mathrm{d}$	$27 \mathrm{a}+9 \mathrm{~b}+3 \mathrm{c}+\mathrm{d}$	$64 \mathrm{a}+16 \mathrm{~b}+4 \mathrm{c}+\mathrm{d}$	$125 \mathrm{a}+25 \mathrm{~b}+5 \mathrm{c}+\mathrm{d}$
D1	$7 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}$	$19 \mathrm{a}+5 \mathrm{~b}+\mathrm{c}$	$37 \mathrm{a}+7 \mathrm{~b}+\mathrm{c}$	$61 \mathrm{a}+9 \mathrm{~b}+\mathrm{c}$	
D2	$12 \mathrm{a}+2 \mathrm{~b}$	$18 \mathrm{a}+2 \mathrm{~b}$	$24 \mathrm{a}+2 \mathrm{~b}$		
D3	6 a	6 a			
D4	0				

From the previous experience, the basic knowledge of the polynomial difference theorem can be put in another way.

III. Inverse Polynomial Differnce theorem !

If the $\mathbf{m}^{\text {th }}$ difference of a polynomial sequence is equal then its $\mathbf{n}^{\text {th }}$ term will be a polynomial in \mathbf{n} of degree m.

First Difference is the difference between two consecutive terms. Second difference is the difference between two neighboring first differences. So on

3.1 Problem 1: Find the $n^{\text {th }}$ term of the triangular number sequence1,3,6,10,15,21,28,36,45,55...

Solution
First term $=t_{1}=1, t_{2}=3, t_{3}=6, t_{4}=10, t_{5}=15$ Using polynomial difference theorem, we can find the $\mathrm{n}^{\text {th }}$ term,

	FirstTerm $\mathrm{t}_{1}=\mathrm{P}(1)$	SecondTerm $\mathrm{t}_{2}=\mathrm{P}(2)$	ThirdTerm $\mathrm{t}_{3}=\mathrm{P}(3)$	FourthTerm $\mathrm{t}_{4}=\mathrm{P}(4)$	FifthTerm t_{5}
	1	3	6	10	15
D1	2	3	4	5	
D2	1	1	1		
D3	0	0			

Here Second difference is Equal, which means we can represent its $\mathrm{n}^{\text {th }}$ term as a polynomial of degree 2, i.e. the general representation $t_{n}=p(n)=a^{2}+b n+c$
$\mathrm{t}_{1}=\mathrm{p}(1)=\mathrm{a}+\mathrm{b}+\mathrm{c}=1$
$\mathrm{t}_{2}=\mathrm{p}(2)=4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=3$
$\mathrm{t}_{3}=\mathrm{p}(3)=9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=6$
Solving this we get value of $a=12 ; b=12 ; c=0$;

$$
\mathrm{n}^{\text {th }} \text { term }=\mathrm{p}(\mathrm{n})=\frac{n(n+1)}{2}
$$

3.2 Problem 2: the $n^{\text {th }}$ term of the number sequence $\sum \boldsymbol{k}^{4}$

 solutionTaking $\mathrm{t}_{\mathrm{n}}=\boldsymbol{\sum} \boldsymbol{k}^{\mathbf{4}}$

	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
	1	17	98	354	979	2295	4676
D1	16	81	256	625	1296	2401	
D2	65	110	369	671	1105		
D3	110	194	302	434			
D4	84	108	132				
D5	24	24					

Let $\mathrm{p}(\mathrm{n})$ be the $\mathrm{n}^{\text {th }}$ term, Since $5^{\text {th }}$ difference is equal, the degree of $\mathrm{n}^{\text {th }}$ term is 5
i.e. $t_{n}=p(n)=a n^{5}+n^{4}+\mathrm{cn}^{3}+d n^{2}+e n+f$
$\mathrm{t}_{1}=\mathrm{p}(1)=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=1$
$\mathrm{t}_{2}=\mathrm{p}(2)=32 \mathrm{a}+16 \mathrm{~b}+8 \mathrm{c}+4 \mathrm{~d}+2 \mathrm{e}+\mathrm{f}=17$
$t_{3}=p(3)=243 a+81 b+27 c+9 d+3 e+f=98$
$\mathrm{t}_{4}=\mathrm{p}(4)=1024 \mathrm{a}+256 \mathrm{~b}+64 \mathrm{c}+16 \mathrm{~d}+4 \mathrm{e}+\mathrm{f}=354$
$\mathrm{t}_{5}=\mathrm{p}(5)=3125 \mathrm{a}+625 \mathrm{~b}+125 \mathrm{c}+25 \mathrm{~d}+5 \mathrm{e}+\mathrm{f}=979$
$\mathrm{t}_{6}=\mathrm{p}(6)=7776 \mathrm{a}+1296 \mathrm{~b}+216 \mathrm{c}+36 \mathrm{~d}+6 \mathrm{e}+\mathrm{f}=2275$
$p(2)-p(1)=3 a+b=2-(1)$
$\mathrm{p}(3)-\mathrm{p}(2)=5 \mathrm{a}+\mathrm{b}=3-$-(2)
(2)-(1) $=2 a=1$
$\mathrm{a}=12$
Solving this we get $p(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$
$\sum_{k=1}^{n} k^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$

IV. Polygonal Numbers

In mathematics, a polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. The dots were thought of as alphas (units).

A triangular number or triangle number, numbers the objects that can form an equilateral triangle. The $\mathrm{n}^{\text {th }}$ term of Triangle number is the number of dots in a triangle with n dots on a side The sequence of triangular numbers are $1,3,6,10,15,21,28,36,45,55, \ldots$.

A Square number, numbers the objects that can form a square. The $\mathrm{n}^{\text {th }}$ square number is the number of dots in a square with n dots on a side. $1,4,9,16,25,36,49,64,81 \ldots$.

A Pentagonal number, numbers the objects that can form a regular pentagon. The $\mathrm{n}^{\text {th }}$ pentagonal number is the number of dots in a pentagon with n dots on a side. $1,5,12,22,35,51,70,92 \ldots$. Etc

3Dimension

A tetrahedral number, or triangular pyramidal number, is a number that represents pyramid with triangular base and three sides, called tetrahedron. The $\mathrm{n}^{\text {th }}$ term of tetrahedral number is the sum of the first n triangular numbers. $1,4,10,20,35,56,84,120,165, \ldots$.

A Square pyramidal number, is a number that represents a pyramid with a square base and 4 sides. The $\mathrm{n}^{\text {th }}$ term of Square pyramidal number is the sum of the first n Square numbers. 1,5,14,30,55,91,140,204.... Etc

4Dimension
The $n^{\text {th }}$ term of 4D triangular number is the sum of the first n triangular pyramidal numbers. $1,5,15,35 \ldots$
The $n^{\text {th }}$ term of 4D square number is the sum of the first n square pyramidal numbers. $1,6,20,50 \ldots$.
The $\mathrm{n}^{\text {th }}$ term of 4D S-gonal number is the sum of the first n S-gonal pyramidal numbers. Etc

5Dimension
The $n^{\text {th }}$ term of 5D triangular number is the sum of the first n 4D triangular numbers. 1,6,21,56....
The $\mathrm{n}^{\text {th }}$ term of 5D square number is the sum of the first n 4 D square numbers. 1,7,27,77.....
The $\mathrm{n}^{\text {th }}$ term of 5D S-gonal number is the sum of the first n 4D S-gonal
numbers.

The $\mathrm{n}^{\text {th }}$ term of KD S-gonal numbers is the sum of the first n

(k-1)D S-gonal numbers.

4.1 2D Polygonal Numbers

4.1.1 Triangular numbers:-1,3,6,10,15,21,28,36,45

Refer section 3.1

4.1.2 Square Numbers: $1,4,9,16,25,36,49,64,81 \ldots$

$\mathrm{t}_{1}=1 ; \mathrm{t}_{2}=4, \mathrm{t}_{3}=9, \mathrm{t}_{4}=16, \mathrm{t}_{5}=25, \mathrm{t}_{6}=36$
First term $=t_{1}=1, t_{2}=4, t_{3}=9, t_{4}=16, t_{5}=25$ Using polynomial difference theorem, we can find the $\mathrm{n}^{\text {th }}$ term,

	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
	1	4	9	16	25
D1	3	5	7	9	
D2	2	2	2		
D3	0				

Here Second difference is Equal, which means we can represent its $\mathrm{n}^{\text {th }}$ term as a polynomial of degree 2, i.e. the general representation $t_{n}=p(n)=a n^{2}+b n+c$
$\mathrm{t}_{1}=\mathrm{p}(1)=\mathrm{a}+\mathrm{b}+\mathrm{c}=1$
$\mathrm{t}_{2}=\mathrm{p}(2)=4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=4$
$\mathrm{t}_{3}=\mathrm{p}(3)=9 \mathrm{a}+3 \mathrm{~b}+\mathrm{c}=9$
Solving this we get $n^{\text {th }}$ term $=p(n)=n^{2}$

4.1.3 Pentagonal Numbers: $\mathbf{1 , 5 , 1 2 , 2 2}$..

$\mathrm{t}_{1}=1 ; \mathrm{t}_{2}=5, \mathrm{t}_{3}=12, \mathrm{t}_{4}=22, \mathrm{t}_{5}=35$,

First term $=t_{1}=1 t_{2}=5, t_{3}=12, t_{4}=22, t_{5}=35$ Using polynomial difference theorem, we can find the $\mathrm{n}^{\text {th }}$ term,

	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
	1	5	12	22	35
D1	4	7	10	13	
D2	3	3	3		
D3	0	0			

Here Second difference is Equal, which means we can represent its $\mathrm{n}^{\text {th }}$ term as a polynomial of degree 2, i.e. the general representation $t_{n}=p(n)=a n^{2}+b n+c$
Solving this we get $\mathrm{n}^{\text {th }}$ term $=\mathrm{p}(\mathrm{n})=\frac{\mathrm{n}(3 \mathrm{n}-1)}{2}$

4.1.4 In similar way we can find Equations of $\mathbf{n}^{\text {th }}$ term of other polygonal Numbers

Triangular Numbers:-1,3,6,10,15,21,28,36,45,55...	$\mathrm{n}(\mathrm{n}+1)$
	2
Square Numbers:-1,4,9,16,25,36,49,64,81,100...	n^{2}
Pentagonal Numbers:-1,5,12,22,35,51,70,92,117,145...	$\underline{n(3 n-1)}$
	2
Hexagonal Numbers:-1,6,15,28,45,66,91,120,153,190...	$\mathrm{n}(2 \mathrm{n}-1)$
Heptagonal Numbers:-1,7,18,34,55,81,112,148,189,235...	$\underline{n(5 n-3)}$
	2
Octagonal Numbers:-1,8,21,40,65,96,133,176,225,280...	$n(3 n-2)$
Nonagonal Numbers:-1,9,24,46,75,111,154,204,261,325...	$\underline{n(7 n-5)}$
	2
Decagonal Numbers:-1,10,27,52,85,126,175,232,297,370...	$n(4 n-3)$

Now we can move to another look, Equation's Equation
Considering $\mathrm{p}(3)$ as 3 sided polygonal numbers (Triangular numbers)
$\mathrm{P}(4)$ as 4 sided polygonal numbers (Square Numbers)

The General formula to find the sum of first $n K^{\text {th }}$ Dimensional S sided polygonal numbers and a
$\mathrm{P}(5)$ as 5 sided polygonal numbers (Pentagonal numbers)
$\mathrm{P}(10)$ as 10 sided polygonal number(Decagonal Numbers)
i.e. $\mathrm{p}(\mathrm{s})$ will be s sided polygonal number.

	$\mathbf{P (3)}$	$\mathbf{P}(4)$	$\mathbf{P}(5)$	$\mathbf{P}(6)$
First Difference D1	$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$	$\frac{n}{2}$	$\frac{n(3 n-1)}{2}$	$\mathrm{n}(2 \mathrm{n}-1)$
Second Difference D2	0	$\frac{\mathrm{n}(\mathrm{n}-1)}{2}$	$\frac{\mathrm{n}(\mathrm{n}-1)}{2}$	$\frac{\mathrm{n}(\mathrm{n}-1)}{2}$

Therefore $\quad \mathrm{P}(\mathrm{s})=\mathrm{as}+\mathrm{b}$
$\mathrm{p}(3)=3 \mathrm{a}+\mathrm{b}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$p(4)=4 a+b=n^{2}$
$\mathrm{p}(5)=5 \mathrm{a}+\mathrm{b}=\frac{n(3 n-1)}{2}$
Solving we get $\mathrm{a}=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
$\mathrm{b}=\mathrm{n}(2-\mathrm{n})$
Therefore $P(s)=\frac{n}{2}[(n-1) s+4-2 n]$ In similar way (As shown above) we can find the curresponding equations of $\mathbf{n}^{\text {th }}$ term in any dimension !

4.2 3D Polygonal Numbers (3 Dimensional Polygonal Numbers)

Tetrahedral Numbers:-1,4,10,20,35,56,84...	$\underline{n(n+1)(n+2)}$
	6
Square Pyramidal Numbers 1,5,14,30,55,91,.....	$\underline{n(n+1)(2 n+1)}$
	6
Pentagonal Pyramidal Numbers 1,6,18,40,75,126,196,288...	$n^{2}(n+1)$
	6
Hexagonal Pyramidal Numbers 1,7,22,50,95,161,252,372...	$\underline{n(n+1)(4 n-1)}$
	6
Heptagonal Pyramidal Numbers 1,8,26,60,115,196,308...	$n(n+1)(5 n-2)$
	6
Octagonal Pyramidal Numbers 1,9,30,70,135,231,364...	$\underline{n(n+1)(2 n-1)}$
	2
Nonagonal Pyramidal Numbers 1,10,34,80,155,266,420,624...	$n(n+1)(7 n-4)$
	6
DecagonalPyramidal Numbers 1,11,38,90,175,301,...	$\underline{n(n+1)(8 n-5)}$
	6
S-gonal Pyramidal Numbers	$\frac{n(n+1)}{6}[(n-1) s+5-2 n]$

4.3 4D Polygonal Numbers (4 Dimensional Polygonal Numbers)

4D Triangular Numbers $1,5,15,35,70,126, \ldots$	$\frac{n(n+1)(n+2)(n+3)}{24}$
4D Square Numbers $1,6,20,50,105,196, \ldots \ldots$	$\frac{n(n+1)^{2}(n+2)}{12}$
4D Pentagonal Numbers $1,7,25,65,140,266, \ldots \ldots$	$\frac{n(n+1)(n+2)(3 n+1)}{24}$
4D Hexagonal Numbers $1,8,30,80,175,336 \ldots$	$\frac{n^{2}(n+1)(n+2)}{6}$
4D Heptagonal Numbers $1,9,35,95,210,406 \ldots$	$\frac{n(n+1)(n+2)(5 n-1)}{24}$
4D Octagonal Numbers 1,10,40,110,245,476,..	$\frac{n(n+1)(n+2)(3 n-1)}{12}$
4D 9-gonal Numbers 1,11,45,125,280,546...	$\frac{n(n+1)(n+2)(7 n-3)}{24}$
4D Decagonal Numbers 1,12,50,140,315,616,...	$\frac{n(n+1)(n+2)(2 n-1)}{6}$
4D S-gonal Numbers	$\frac{n(n+1)(n+2)}{24}[(n-1) s+6-2 n]$

The General formula to find the sum of first $n K^{\text {th }}$ Dimensional S sided polygonal numbers and a
4.4 5D Polygonal Numbers (5 Dimensional Polygonal Numbers)

5D Triangular Numbers1,6,21,56,126,252,462...	$\frac{n}{120}(n+1)(n+2)(n+3)(n+4)$
5D Square Numbers1,7,27,77,182,378,714,......	$\frac{n}{120}(n+1)(n+2)(n+3)(2 n+3)$
5D Pentagonal Numbers1,8,33,98,238,504,966,...	$\frac{n}{120}(n+1)(n+2)(n+3)(3 n+2)$
5D Hexagonal Numbers1,9,39,119,294,630,1218...	$\frac{n}{120}(n+1)(n+2)(n+3)(4 n+1)$
5D Heptagonal Numbers1,10,45,140,350,756,1470...	$\frac{n}{120}(n+1)(n+2)(n+3)(5 n)$
5D Octagonal Numbers1,11,51,161,406,882,1722,..	$\frac{n}{120}(n+1)(n+2)(n+3)(6 n-1)$
5D 9-gonal Numbers1,12,57,182,462,1008,1974,..	$\frac{n}{120}(n+1)(n+2)(n+3)(7 n-2)$
5D Decagonal Numbers 1,13,63,203,518,1134,2226,..	$\frac{n}{120}(n+1)(n+2)(n+3)(8 n-3)$
5D S-gonal Numbers	$\frac{n(n+1)(n+2)(n+3)}{120}[(n-1) s+7-2 n]$

In similar strategy we can formulate the general equation for 3D S-gonal,4D S-gonal,5D S-gonal, 6D S-gonal,7D-sgonal, 8D S-gonal, 9D S-gonal, $\mathrm{n}^{\text {th }}$ term and sum of n terms.

Can we make a most Generalization formula , that is valid for all dimensions all sides and every term ?
Let us take a look on that.
V. Dimensional Polygonal Numbers And Its $\mathbf{N}^{\text {th }}$ Term!

Dimension	$\mathrm{n}^{\text {th }}$ term
2D S-GONAL NUMBERS	$\frac{n}{2!}[(n-1) s+4-2 n]$
3D S-GONAL NUMBERS	$\frac{n(n+1)}{3!}[(n-1) s+5-2 n]$
4D S-GONAL NUMBERS	$\frac{n(n+1)(n+2)}{4!}[(n-1) s+6-2 n]$
5D S-GONAL NUMBERS	$\frac{n(n+1)(n+2)(n+3)}{5!}[(n-1) s+7-2 n]$
6D S-GONAL NUMBERS	$\frac{n(n+1)(n+2)(n+3)(n+4)}{6!}[(n-1) s+8-2 n]$
......
......
......	\ldots
.....	\ldots
KD S-GONAL NUMBERS	$\frac{n(n+1)(n+2)(n+3)(n+4) \ldots(n+k-2)}{k!}[(n-1) s+k+2-2 n]$

The General formula of $\mathrm{k}^{\text {th }}$ Dimensional s sided polygonal numbers $\mathrm{n}^{\text {th }}$ term is

$$
P(k, s, n)=\frac{n(n+1)(n+2)(n+3)(n+4) \ldots(n+k-2)}{k!}[(n-1) s+k+2-2 n]
$$

Where
k denotes dimension
s denotes no.of sides
n denotes no.of terms.
The $\mathrm{n}^{\text {th }}$ term of kD S-gonal numbers is the sum of the first $\mathrm{n}(\mathrm{k}-1)$ D S-gonal numbers.
So replacing k by $\mathrm{k}+1$ gives the equation of the summation
The General formula to find the sum of first $n \mathrm{k}^{\text {th }}$ Dimensional s sided polygonal numbers is

$$
\sum P(k, s, n)=\frac{n(n+1)(n+2)(n+3)(n+4) \ldots(n+k-1)}{(k+1)!}[(n-1) s+k+3-2 n]
$$

OR

$$
P(k, s, n)=\frac{(n+k-2)!}{(n-1)!k!}[(n-1) s+k+2-2 n]
$$

$$
\sum P(k, s, n)=\frac{(n+k-1)!}{(n-1)!(k+1)!}[(n-1) s+k+3-2 n]
$$

VI. Some Properties of polygonal Numbers

6.1 2 Dimension

Name	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	$\mathrm{n}^{\text {th }}$ Term
Triangular	1	3	6	10	15	21	$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
Square	1	4	9	16	25	36	$\frac{n^{2}}{n(3 n-1)} \frac{2}{2}$
Pentagonal	1	5	12	22	35	51	$\mathrm{n}(2 \mathrm{n}-1)$
Hexagonal	1	6	15	28	45	66	$\frac{n(5 n-3)}{2}$
Heptagonal	1	7	18	31	50	81	$n(3 n-2)$
Octagonal	1	8	21	40	65	96	

| Column Difference | 0 | 1 | 3 | 6 | $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Here the difference between two rows is same as the sequence of triangular numbers in such a way that the $\mathrm{n}^{\text {th }}$ triangular number is the $(\mathrm{n}+1)^{\text {th }}$ difference.
A diagonal Relation ship
Which means the difference between the equations will be in such a way that $\mathrm{n}^{\text {th }}$ term of s-gonal $=\mathrm{n}^{\text {th }}$ term of triangular number $+(\mathrm{s}-3) \mathrm{d}=\frac{n}{2}[(n-1) s+4-2 n]$

6.2 3 Dimension

Name	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	n^{th} Term
Triangular	1	4	10	20	35	56	$\frac{n(n+1)(n+2)}{6}$
Square	1	5	14	30	55	91	$\frac{n(n+1)(2 n+1)}{6}$
Pentagonal	1	6	18	40	75	126	$\frac{n^{2}(n+1)}{6}$
Hexagonal	1	7	22	50	95	161	$\frac{n(n+1)(4 n-1)}{6}$
Heptagonal	1	8	26	60	115	196	$\frac{n(n+1)(5 n-2)}{6}$
Octagonal	1	9	30	70	135	231	$\frac{n(n+1)(2 n-1)}{2}$

Column Difference	0	1	4	10	20	35	$\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}-1)}{6}$

The diagonal relationship repeats here also, So $\mathrm{n}^{\text {th }}$ term of s-gonal $=$ $\mathrm{n}^{\text {th }}$ term of tetrahedral number $+(\mathrm{s}-3) \mathrm{d}=\frac{n(n+l)}{6}[(n-1) s+5-2 n]$

6.3 4 Dimension

Same effect repeats here Therefore $\mathrm{n}^{\text {th }}$ term of s -gonal $=\mathrm{n}^{\text {th }}$ term of 4 d triangular number $+(\mathrm{s}-3) \mathrm{d}=\frac{n(n+1)(n+2)}{24}[(n-1) s+6-2 n]$

6.4 5 Dimension

Name	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	$\mathrm{n}^{\text {th }}$ Term
Triangular	1	6	21	56	126	252	$\frac{n}{120}(n+1)(n+2)(n+3)(n+4)$
Square	1	7	27	77	182	378	$\frac{n}{120}(n+1)(n+2)(n+3)(2 n+3)$
Pentagonal	1	8	33	98	238	504	$\frac{n}{120}(n+1)(n+2)(n+3)(3 n+2)$
Hexagonal	1	9	39	119	294	630	$\frac{n}{120}(n+1)(n+2)(n+3)(4 n+1)$
Heptagonal	1	10	45	140	350	756	$\frac{n}{120}(n+1)(n+2)(n+3)(5 n)$

Column Difference	0	1	6	21	56	126	$\frac{n}{120}(n+1)(n+2)(n+3)(n-1)$

Same effect repeats here Therefore $\mathrm{n}^{\text {th }}$ term of s -gonal $=\mathrm{n}^{\text {th }}$ term of 5 d
triangular number $+(\mathrm{s}-3) \mathrm{d}=\frac{n(n+1)(n+2)(n+3)}{5!}[(n-1) s+7-2 n]$
Therefore $\mathrm{n}^{\text {th }}$ term of 5 Dimensional s gonal number is $=\frac{n(n+1)(n+2)(n+3)}{5!}[(n-1) s+7-2 n]$

VII. More Sequences

7.1 m Times Sum of Sequences

Numbers	Sum	Notation
$1,2,3,4, \ldots \ldots$	$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$	$\sum \mathrm{n}$
$1,1+2,1+2+3,1+2+3+4, \ldots$. e, $1,3,6,10 \ldots$ etc	$\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3!}$	$\sum\left(\sum \mathrm{n}\right)=\Sigma^{2} \mathrm{n}$
$1,1+3,1+3+6,1+3+6+10, .$. ie $, 1,4,10,20, \ldots$ etc	$\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)}{4!}$	$\sum \sum \sum \mathrm{n}=\Sigma^{3} \mathrm{n}$

In general $\Sigma^{\mathrm{m}} \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3) \ldots(\mathrm{n}+\mathrm{m})}{(\mathrm{m}+1)!}$

Numbers	Sum	Notation
$1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2} \ldots \ldots$	$\frac{n(n+1)(2 n+1)}{6}$	$\sum \mathrm{n}^{2}$
$1^{2}, 1^{2}+2^{2}, 1^{2}+2^{2}+3^{2}, 1^{2}+2^{2}+3^{2}+4^{2} \ldots$	$\frac{n(n+1)(n+2)(2 n+2)}{4!}$	$\sum\left(\sum \mathrm{n}^{2}\right)=\Sigma^{2} \mathrm{n}^{2}$
$1,5,14,30,55,91,140, \ldots$	$\frac{n(n+1)(n+2)(n+3)(2 n+3)}{5!}$	$\Sigma \Sigma \Sigma \mathrm{n}^{2}=\Sigma^{3} \mathrm{n}^{2}$
$1,1+5,1+5+14,1+5+14+30, \ldots$	$\frac{n(n+1)(n+2)(n+3)(n+4)(2 n+4)}{6!}$	$\Sigma \Sigma \Sigma \Sigma \mathrm{n}^{2}=\Sigma^{4} \mathrm{n}^{2}$
$1,6,20,50,105,196,336 \ldots$		
$1,7,27,77,182,378,714, \ldots$		

In general $\Sigma^{m} n^{2}=\frac{n(n+1)(n+2) \ldots(n+m)(2 n+m)}{(m+2)!}$
$\Sigma^{\mathrm{m}} \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3) \ldots(\mathrm{n}+\mathrm{m})}{(\mathrm{m}+1)!}$
$\Sigma^{m} n^{2}=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)(2 n+m)}{(m+2)!}$
$\Sigma^{\mathrm{m}} \mathrm{n}^{3}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3) \ldots(\mathrm{n}+\mathrm{m})\left(6 \mathrm{n}^{2}+6 \mathrm{mn}+\mathrm{m}^{2}-\mathrm{m}\right)}{(\mathrm{m}+3)!}$
$\Sigma^{m} n^{4}=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)\left(24 n^{3}+36 m^{2}+14 m^{2} n-10 m n-5 m^{2}+m^{3}\right)}{(m+4)!}$

$$
\Sigma^{\mathrm{m}} \mathrm{n}^{5}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3) \ldots(\mathrm{n}+\mathrm{m})}{(\mathrm{m}+5)!}
$$

x

$$
\left(120 n^{4}+240 \mathrm{mn}^{3}-150 m^{2} n^{2}-90 m n^{2}-90 m^{2} n+30 m^{3} n+4 m+11 m^{2}-16 m^{3}+m^{4}\right)
$$

VIII. Figures

IX. Conclusion

We have shown that, through this special type method we can find the $\mathrm{n}^{\text {th }}$ term and sum of n terms of any different kinds of polynomial sequences.
It is worth noting that using this process we can find The General Formula to find the kth Dimensional S sided Polygonal numbers $\mathrm{n}^{\text {th }}$ term and Sum of n terms

The General formula of $\mathrm{k}^{\text {th }}$ Dimensional s sided polygonal numbers $\mathrm{n}^{\text {th }}$
term is

$$
P(k, s, n)=\frac{n(n+1)(n+2)(n+3)(n+4) \ldots(n+k-2)}{k!}[(n-1) s+k+2-2 n]
$$

Where
k denotes dimension
s denotes no.of sides
n denotes no.of terms.
The $\mathrm{n}^{\text {th }}$ term of kD S-gonal numbers is the sum of the first $\mathrm{n}(\mathrm{k}-1) \mathrm{D}$ S-gonal numbers.
So replacing k by $\mathrm{k}+1$ gives the equation of the summation
The General formula to find the sum of first $\mathrm{n} \mathrm{k}^{\text {th }}$ Dimensional S sided
polygonal numbers is

$$
\sum P(k, s, n)=\frac{n(n+1)(n+2)(n+3)(n+4) \ldots(n+k-1)}{(k+1)!}[(n-1) s+k+3-2 n]
$$

OR

$$
\begin{aligned}
P(k, s, n) & =\frac{(n+k-2)!}{(n-1)!k!}[(n-1) s+k+2-2 n] \\
\sum P(k, s, n) & =\frac{(n+k-1)!}{(n-1)!(k+1)!}[(n-1) s+k+3-2 n]
\end{aligned}
$$

Similarly in addition to the above equation I have generated many polynomial sequence's $\mathrm{n}^{\text {th }}$ term. Among them some equations generated are

$$
\begin{gathered}
\Sigma^{m} n=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)}{(m+1)!} \\
\Sigma^{m} n^{2}=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)(2 n+m)}{(m+2)!} \\
\Sigma^{m} n^{3}=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)\left(6 n^{2}+6 m n+m^{2}-m\right)}{(m+3)!} \\
\Sigma^{m} n^{4}=\frac{n(n+1)(n+2)(n+3) \ldots(n+m)\left(24 n^{3}+36 m^{2}+14 m^{2} n-10 m n-5 m^{2}+m^{3}\right)}{(m+4)!}
\end{gathered}
$$

Acknowledgements

I am greatful to
Mr.RAJESH .P.M ,Asst.Proffessor of Physics ,Govt. Engineering college Thrissur
Mr. DINESH. P K Dept.of BBA ,PTM Govt.College, Perinthalmanna,
Dr. R V G Menon,Director Integrated Rural Technology Center (IRTC), Palakkad;
Dr.Ambat Vijayakumar , Department of Mathematics, Cochin University of Science and Technology, Cochin682022.

Dr. E. Krishnan, Head, Dept. of Mathematics University College(Rtd), Thiruvananthapuram;
C. Radhakrishnan, author, researcher \& media person, ANCESTRAL HOME: chamravattom 676102 Kerala India
Dr. George Varghese, Director, Directorate of Research (DOR), University of Calicut
Dr. K. SOMASUNDARAM,Department of Comp. Science \& Applications,Gandhigram Rural Institute,Gandhigram - 624 302,Tamil Nadu
Mr. Ratheesh K.P,Asst. Professor,Dept. of Mathematics,PTM Govt. College, Perinthalmanna,Malappuram, Dr.S.Gopalakrishnan Proffessor and Head(Rtd), Department of Chemistry,Manonmaniam Sundaranar University,Tirunelveli, .

References

[1]. MATHEMATICS for the MILLION - Lancelot Hogben 1978

