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Abstract: In this paper, we present necessary and sufficient condition that a function 𝑓 𝑥 =  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥, 

where the coefficient 𝑎𝑛  (n = 1,2,3,……) are quasi-monotone to be of class 𝐿(𝜙,𝜓). Finally we discussed the  

applications of the Fourier series  

 

I.  Introduction 
            Fourier series are of great importance in both theoretical and applied mathematics. This paper will focus 

on the study of order of decrease of Fourier coefficients of a function belonging to different subclasses of 

class 𝐿𝜙(𝜙 ≥ 1)  represents one of the  fundamental issues of Fourier theory. This paper deals with the Fourier 

coefficients of a function of class 𝐿(𝜙,𝜓), where 1 ≤ 𝜙 < ∞,  −1 < 𝜙𝜓 < 𝜙 − 1.  Of the many possible 

methods of estimating complex-valued functions, Fourier series are especially attractive because uniform 

convergence of the Fourier series (as more terms are added) is guaranteed for continuous, bounded functions. 

 

II. Basic Results 
     We represent the main statements needed for representation of the result of this paper. 

Def  2.1.  A sequence  𝜆𝑛   is quasi-monotone  if 𝜆𝑛 > 0 and 𝑛−𝜏𝜆𝑛 ↓ 0 for some 𝜏 > 0. 
Def  2.2 .  Let 1 ≤ 𝜇 < ∞, we say that the function f with period 2π is in class 𝐿𝜙 , if  

 𝑓 𝜙 =     𝑓(𝑥) 𝜙𝑑𝑥

2𝜋

0

 

1/𝜙

< ∞ 

                                   So                               𝐿𝜙 =
𝑓(𝑥)

 𝑓(𝑥) 𝜙
=    𝑓(𝑥) 𝜙𝑑𝑥

2𝜋

0
 

1/𝜙

< ∞ 

Def.2.3. A function f(x) is said to belong to the class 𝐿 𝜙,𝜓 , if   𝑓 𝜙𝜓  =   𝑓(𝑥) 𝜙(𝑠𝑖𝑛𝑥)𝜙𝜓 𝑑𝑥
𝜋

0
 

1/𝜙
< ∞, 

where 1 ≤ 𝜙 < ∞,  −1 < 𝜙𝜓 < 𝜙 − 1. 

So      𝐿 𝜙,𝜓 =  
𝑓(𝑥)

 𝑓(𝑥) 𝜙 ,𝜓
=     𝑓(𝑥) 𝜙(𝑠𝑖𝑛𝑥)𝜙𝜓𝑑𝑥

𝜋

0
 

1/𝜙
< ∞. 

The following statement gives necessary condition adequate that is necessary to complete  Fourier coefficients 

in order that function belongs to class   𝐿𝜙(𝐿 𝜙,𝜓 . 

Theorem 2.1.  Let  1≤ 𝜙 ≤ 2 and  𝑞 =
𝜙

𝜙−1
   2 ≤ 𝑞 ≤ ∞ . The following estimate holds true 

1. If 𝑓 ∈ 𝐿𝜙  and   𝑐𝑛  
∞
𝑛=−∞

 are Fourier coefficients of function, then 

                        𝑐𝑛  
𝑞∞

 𝑛  =0  
1/𝑞

≤ 𝐴(𝜙) 𝑓 𝜙  

2. If  𝑐𝑛  
∞
𝑛=−∞

 is sequence of numbers such that      𝑐𝑛  
𝜙∞

 𝑛  =0 < ∞ 

Then there exists a function 𝑓 ∈ 𝐿𝑞  with Fourier coefficients  𝑐𝑛   the inequality  

                                𝑓 𝜙  ≤ 𝐴′(𝑞)   𝑐𝑛  
𝑞∞

 𝑛  =0  
1/𝑞

 holds true. 

Theorem 2.2.  The necessary and sufficient condition that  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 , 𝑎𝑛 ↓ 0 be the Fourier series of a 

function  𝑓 ∈ 𝐿𝜙 , 𝜙 > 1 is that the series    𝑎𝑛
𝜙∞

𝑛=1 𝑛𝜙−2 < ∞. 

Theorem. 2.3. The necessary and sufficient condition that the  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥, where  𝑎𝑛   is positive and quasi - 

monotone be Fourier series of a function 𝑓 ∈ 𝐿 𝜙,𝜓 , where 1 ≤ 𝜙 < ∞,−1 < 𝜙𝜓 < 𝜙 − 1 is that the 

series    (𝑎𝑛 )𝜙∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 < ∞. 

        In [1] given the following theorem concerning the Fourier coefficients of a function belonging to  𝐿𝜙   class. 

Theorem 2.4.  Let 𝑓 ∈ 𝐿𝜙 , 𝜙 > 1, function given with Fourier series 𝑓 𝑥 =  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥,     𝑎𝑛 ↓ 0. Then  

𝑆1

1
,
𝑆2

2
,
𝑆3

3
,…… are also Fourier coefficients of a function of class 𝐿𝜙 ,    where     𝑆𝑛  =  𝑎𝑘

𝑛
𝑘=1   . 

Lemma 2.1.  If  𝑎𝑛   is positive and quasi - monotone , then  𝐴𝑛 =
1

𝑛
 𝑎𝑘   𝑛
𝑘=1 is also positive and quasi 

monotone. 
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III. Main Results 
 Theorem 3.1. Let  𝑓 𝑥 ∈ 𝐿 𝜙,𝜓  , 1 ≤ 𝜙 < ∞,  −1 < 𝜙𝜓 < 𝜙 − 1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  given with Fourier series 

   𝑓 𝑥 =  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥, where  𝑎𝑛   is positive and quasi - monotone. 

 Then the series  𝐴𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 , where  𝐴𝑛  =

1

𝑛
 𝑎𝑘   𝑛
𝑘=1  will be Fourier series of a function F(x)  of class 

𝐿 𝜙,𝜓 .  
Proof: Let 𝑓 𝑥 = 𝐿 𝜙,𝜓  , 1 ≤ 𝜙 < ∞,  −1 < 𝜙𝜓 < 𝜙 − 1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  given with Fourier  series 𝑓 𝑥 =
 𝑎𝑛

∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥,  where  𝑎𝑛   is positive and quasi monotone. 

       Since  𝑎𝑛   is positive and quasi monotone and due to Lemma 2.1 ,  𝐴𝑛 =
1

𝑛
 𝑎𝑘   𝑛
𝑘=1  is positive and quasi 

monotone. To proof of this theorem we have to show that  (𝐴𝑛 )𝜙∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 < ∞, then by theorem (2.3) 

follows that the series  𝐴𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 is a Fourier series of a function F(x)  of class 𝐿 𝜙,𝜓 .  

     Let              𝑓1 𝑥 =   𝑓(𝑥
𝑥

0
) 𝑑𝑥  and  𝑓2 𝑥 =   𝑓1 (𝑥

𝑥

0
) 𝑑𝑥   

 Then, 

𝑓2 𝑥 =   𝑎𝑘(1 − cos 𝑘𝑥)𝑘−2  

∞

𝑘=1

≥ 𝑎𝑘(1 − cos𝑘𝑥)𝑘−2  

𝑛

𝑘=1

 

   For  
𝜋

4(𝑛+1)
≤ 𝑥 ≤

𝜋

4𝑛
 

 We have 𝑓2 𝑥 =  𝜌1 .𝑛
−2 . 𝑎𝑘

∞
𝑘=1 ≥ 𝜌1 .𝑛

−1𝐴𝑛  for same constant 𝜌1 .  
 So that        𝐴𝑛 ≤ 𝜌.𝑛. 𝑓2 𝑥  for same constant 𝜌. 
Thus   

               𝐴𝑛 
𝜙∞

𝑛=1 𝑛𝜙−𝜙𝜓−2 ≤ 𝜌  𝑓2 𝑥  
𝜙

∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 

                                                = 𝜌   𝑛𝜙−𝜙𝜓−2    min 𝜋

4(𝑛+1)
≤𝑥≤

𝜋

4𝑛
  (𝑓2 (𝑥))𝜙∞

𝑛=1  

        ≤  𝜌   𝑠𝑖𝑛𝑥 𝜙𝜓−𝜙
𝜋

4𝑛
 
𝜋

4(𝑛+1)

    
𝑓2 𝑥 

𝑥
 
𝜙

 𝑑𝑥 ∞
𝑛=1  

                                                =  𝜌    𝑠𝑖𝑛𝑥 𝜙𝜓−𝜙
𝜋

4𝑛
0

 𝑥−1𝑓2 𝑥  
𝜙𝑑𝑥  

        ≤  𝜌(𝜓,𝜙)  𝑠𝑖𝑛𝑥 𝜙𝜓−𝜙
𝜋

4 
0

 𝑥−1𝑓1 𝑥  
𝜙𝑑𝑥  

                                                ≤  𝜌 𝜓,𝜙    𝑠𝑖𝑛𝑥 𝜙𝜓
𝜋

4
0

 𝑓 𝑥  𝜙𝑑𝑥 < ∞. 

A similar method may be used to estimate 

                                                 𝑠𝑖𝑛𝑥 𝜙𝜓
𝜋

4
0

 𝑓 𝑥  𝜙𝑑𝑥 < ∞. 

                                                  𝑛𝜙−𝜙𝜓−2  (𝐴𝑛 )𝜙  < ∞.∞
𝑛=1  

                   Hence the theorem . 

Theorem 3.2. Let  𝑥 =  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 , where  𝑎𝑛   is positive and quasi monotone. Then a necessary and 

sufficient condition that  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 be the Fourier series  of a function 𝑓 𝑥 ∈ 𝐿 𝜙,𝜓  is that  

 𝐴𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥   to be the Fourier series of a function F(x) be belonging to 𝐿 𝜙,𝜓 where 1 ≤ 𝜙 < ∞,  −1 <

𝜙𝜓 < 𝜙 − 1 and   𝐴𝑛  =
1

𝑛
 𝑎𝑘   𝑛
𝑘=1 .  

Proof: The necessary part follows from Theorem 3.1 as a particular case. 

Sufficiency:   Suppose that  𝐴𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥 is a fourier series of a function  𝑓 𝑥 ∈ 𝐿 𝜙,𝜓  

Since  𝑎𝑛   is positive and quasi monotone , then by lemma (2.1) follows  𝐴𝑛   is positive and quasi monotone. 

Hence by theorem (2.3) we have    (𝐴𝑛)𝜙∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 < ∞. Since sequence  𝑎𝑛   is positive and quasi 

monotone for some constant 𝜏 > 0,   sequence  𝑛−𝜏𝑎𝑛 ↓ 0, and for some constant 𝜌1 > 0 we have 𝑛−𝜏𝑎𝑛 ≤
𝜌1 𝑘

−𝜏𝑎𝑘 for  k < n, then it follows that  

                          𝐴𝑛 =
1

𝑛
 𝑎𝑘  = 𝑛
𝑘=1

1

𝑛
 𝑘−𝜏𝑎𝑘𝑘

𝜏  ≥  
1

𝜌1 

1

𝑛
 𝑛−𝜏𝑎𝑛  𝑘𝜏   𝑛

𝑘=1
𝑛
𝑘=1  

                                =
1

𝜌1 

1

𝑛
 𝑛−𝜏𝑎𝑛𝑛𝑛

𝜏  =  
1

𝜌1 
𝑎𝑛        ⟹ 𝑎𝑛  ≤ 𝜌1 𝐴𝑛  

   So that         (𝑎𝑛 )𝜙∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 ≤ (𝜌1 )

𝜙   (𝐴𝑛)𝜙∞
𝑛=1 𝑛𝜙−𝜙𝜓−2 < ∞. 

Hence by theorem (2.3)  𝑓 𝑥 ∈ 𝐿 𝜙,𝜓  and consequently  𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠𝑛𝑥  is the Fourier series of a function 

f(x). 

 

IV. Applications Of Fourier Series 
 Fourier series simplify the analysis of periodic, real valued functions. Specifically, it can break up a 

periodic function into an infinite series of sine and cosine waves. This property makes Fourier series very useful 

in many applications.  

Consider the  common differential equation given by:  

                                            𝑥′′ 𝑡 +  𝑎𝑥′ 𝑡 + 𝑏 = 𝑓(𝑡)                             (4.1) 
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This equation describes the motion of a damped harmonic oscillator that is driven by some function f(t). It can 

be used to model an extensive variety of physical phenomena, such as a driven mass on a spring, an analog 

circuit with a capacitor, resistor, and inductor, or a string vibrated at some frequency. There are two parts to the 
solution of equation (4.1). The first part is a transient that fades away (generally) fairly quickly. When the 

transient is gone, what remains is the steady-state solution.  

The physical property of oscillating systems that makes Fourier Analysis useful is the property of 

superposition in other words, suppose the driving force 𝑓1(𝑡) along with some initial conditions, produces some 

steady state solution 𝑥1(𝑡), and that another driving force 𝑓2(𝑡)  produces the steady state solution 𝑥2(𝑡). Then 

the driving force 𝑓3 (𝑡)= 𝑓1(𝑡)+ 𝑓2 (𝑡)   produces the steady-state response 𝑥2(𝑡) = 𝑥1 𝑡  + 𝑥2(𝑡).  

Then, since we can represent any period driving function as a Fourier series, and it is a simple matter to find 

the steady-state solution to a sinusoidally driven oscillator, we can find the response to the arbitrary driving 

function  

𝑓 𝑥 =  𝑎0 +  𝑎𝑛𝑐𝑜𝑠𝑛𝑥 +  𝑏𝑛𝑠𝑖𝑛𝑛𝑥. 

So suppose we had our square wave equation, where f(t) is the square wave function. We could then 

decompose the square wave into sinusoidal components as follows:  

𝑐𝑛 =  
1

2𝜋
 𝑠(𝑥)𝑒−𝑖𝑛𝑥
𝜋

−𝜋

=  
1

2𝜋
 𝑒−𝑖𝑛𝑥
𝜋

0

 

                                                                   =
𝑖

2𝑛𝜋
 𝑒𝑖𝑛𝜋 − 1  

                                                            𝑐−𝑛 =
−𝑖

2𝑛𝜋
 𝑒−𝑖𝑛𝜋 − 1  

and then just combine the 𝑐𝑛  and 𝑐−𝑛  terms as before. The result would be an infinite sum of sin and cosin terms 

of the form in equation (2). The steady-state response of the system to the square wave would then just be the 

sums of the steady-state responses to the sinusoidal components of the square wave.  

The basic equations of the Fourier series led to the development of the Fourier transform, which can 

decompose a non-periodic function much like the Fourier series decomposes a periodic function. Because this 

type of analysis is very computation-intensive, different Fast-Fourier Transform algorithms have been devised, 

which lower the order of growth of the number of operations from order (N
2

) to order (n log(n)).  
With these new techniques, Fourier series and Transforms have become an integral part of the toolboxes of 

mathematicians and scientists. Today, it is used for applications as diverse as file compression, signal processing 

in communications and astronomy, acoustics, optics, and cryptography.  
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