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I. INTRODUCTION 
Calculus is unarguably one of the most fascinating and useful subject of the modern science and 

engineering curriculum. Calculus of functions of several variables, also called multivariable calculus. The 

generalization of calculus from the real line R  to n-space 
n

R  makes the study of calculus extremely 

interesting. A further generalization of calculus to spaces more general than
n

R , called calculus on manifolds. 

In the study of calculus the differentiability of functions is of prime importance since derivatives appear almost 

everywhere in the field of science and engineering. Applications of derivative in many physical problems e.g. 

approximation of functions about a point, error analysis, obtaining extremum, population growth etc. are of 

great practical interest. 

While teaching calculus to undergraduate students I observed that students grasp the idea of 

differentiability in one variable case quite easily, nevertheless they were not at the same ease with the 
differentiability concept of multivariable functions. In this article an attempt has been made to exposit 

differentiability of multivariable functions in an elegant manner to address pedagogical problems. A reader 

having knowledge of basic calculus and linear algebra will find this article fairly accessible.  

 

II. DIFFERENTIABILITY OF SINGLE VARIABLE FUNCTIONS 

The idea of the notion of the derivative originated from a problem in geometry – the problem of finding 

the tangent at a point of a curve. Though derivative was originally formulated to study the problem of tangents, 

sooner it was observed that it also provides a way to calculate velocity and, more generally the rate of change of 

a function [1].  
To start with the basic definition of derivative first we wish to fix our notation. Most of the texts of 

calculus describe 
dy

dx
as another  notation for ( )f x  where ( )y f x , but the fact that 

dy

dx
 and ( )f x  are 

not  interchangeable is evident when you consider that one does not write 
4

dy

d
 for (4)f  . The obvious 

objection for this is that it does not make any sense to differentiate with respect to a constant i.e. we cannot have 

a rate of change with respect to something that is not changing at all. Though, if there is no risk of confusion one 

can use the notations 
dy

dx
 and ( )f x  freely and interchangeably [2].  

Now we recall the definition of differentiability of a real valued function of a real variable [3].  

Definition: Let A be a subset of R containing a neighborhood of the point a  , that is a  is an interior point of 

A. The derivative of a function : Af R  at a , defined by 

0

( ) ( )
( ) lim

h

f a h f a
f a

h

 
                                     

provided the limit exists. In this case, we say that f is differentiable at point a . 

The following facts are immediate consequence of the above definition: 

(i) Differentiable functions are continuous. 

At this juncture it is worthwhile to mention that above consequence merely tells us that if a function is 

differentiable at a point of the domain then it must be continuous there but fails to provide further information 

about the continuity of the derivative and existence of subsequent derivatives. For example the 

function
2 1

( ) sin 0, 0 and (0) 0f x x x f
x

 
    

 
 has 
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derivative
1 1

( ) 2 sin cos , 0 and (0) 0f x x x f
x x

   
       

   
, here 

0

1
2 sin 0lim

x

x
x

 
 

 
but 

0

1
limcos
x x

 
 
 

does not have a definite value, so f  is not continuous at 0.  

One can check that the function ( )g x x x is differentiable for all x  in R , with ( )g x x   but derivative 

( )g x x  is no more differentiable at 0.  

Remark: Regarding the existence of subsequent derivatives in a neighborhood of the domain, behaviour of 

complex valued functions is pretty stronger than real ones. In case of the complex-valued function of a complex 

variable, existence of first derivative in a neighborhood of the domain guarantees not only the continuity of 

function but the existence of derivatives of all orders. 

 

(ii) Composites of differentiable functions are differentiable. (Chain rule) 

 

III.  DIFFERENTIABILITY OF MULTIVARIABLE FUNCTIONS 

We seek now to define the derivative of multivariable functions. Suppose 
nD R containing a 

neighborhood of point a (i.e. 1( , . . . , )na aa  is an interior point of D ) and a function :f DR . One 

may tempt to define the differentiability of a multivariable function just by replacing a and h  in definition of 

the derivative of single variable function by points of 
n

R but this does not make any sense, as division of a real 

number by a point in 
n

R has not been defined if 1n  .  

Here goes another attempt at a definition: 

Definition: Let 
nD R containing a neighborhood of point a (i.e. a  is an interior point of D ). Let a 

function :f DR . Given a unit vector with 0n u R u suppose such thatt t D  R a u , define 

                                                      
0

( ) ( )
( ) limD

t

f t f
f

t

 
u

a u a
a  

provided the limit exists. This limit depends both on point a and on vector u ; it is called the directional 

derivative of f at a along the vector u or the directional derivative of f at a with respect to vector u . Some 

authors denote directional derivative by
 

( ; )f  a u instead ( )D fu a . 

Example: Let
2:f R R , defined by 

2

1 2
1 2 1 24 2

1 2

( , ) , ( , )
x x

f x x x x
x x

 


0 with ( ) 0f 0 .  

It can be easily checked that all directional derivatives of f exist at (0,0)0 . 

Let 
2

1 2( , )u u  0 u R . A straightforward calculation yields  

                                          

1

2

2

2

2

if 0

( )D

0 if 0

u
u

uf

u




 




u 0  

i.e. function has all directional derivatives at 0 . It can be verified that as we approach to origin (e.g. along the 

curve
2

2 1 , 0x kx k  ) limit of the given function does not exist; hence we infer that function is not 

continuous at origin however it has all directional derivatives at origin. 

It appears that the “directional derivative” is an appropriate generalization of the notion of “derivative” 
but this is not true, because differentiability implies continuity and from above example it is clear that function 

possesses all directional derivatives at origin but not continuous at origin. Obviously directional derivative is 

very useful definition but it restricts us to study the change of f in one direction at a time and in particular, if 

we choose 1{ , . . . , }ne e as standard basis of the n-space
n

R ,   for 1 i n   the directional derivative at a in 

the direction of ieu is merely  partial derivative of f in the 
thi coordinate direction, denoted by D ( )i f a or 
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( )
i

f

x




a . For instance in above example taking 1 2{ (1,0), (0,1)}e e  as standard basis of 

2
R gives 

1D ( ) 0f 0  and
2D ( ) 0f 0 , respectively the first partial derivatives of f  at origin, namely 

1

( )
f

x




0 and

2

( )
f

x




0 . 

Now we seek something stronger to define the concept of differentiability of multivariable functions. 

For this purpose we revisit the differentiability definition of one variable case and take a closer look 

(geometrically). It can be observed that if a function is differentiable at an interior point of the domain then at 
that point there is a (local) tangent line associated with it i.e. differentiable functions are locally linear, or in 

other words differentiable functions enjoy reasonably good local approximation by linear functions. Intuitively 

this means, if a function f  is differentiable at a point a  then after sufficiently zooming-in around the point, 

graph of f locally looks like part of the straight line that is at the point of differentiability there does not exist 

any sharp corner (in addition it may be noted that at the point of differentiability local tangent line must not be 

vertical). For illustration if we observe the graph of function ( )f x x  (Fig. 1), at the origin no matter up to 

which magnitude we zoom-in around the point 0, locally it never looks like part of the straight line and a sharp 

corner at point 0 always remains there (inferring that function is not locally linear at the origin), hence function 

( )f x x  is not differentiable at 0.  

 
Figure 1 (Graph is plotted using Wolfram Alpha Widgets) 

 
The geometrical interpretation of differentiability as existence of (local) tangent line in one variable 

case has an obvious generalization to higher dimensions. In higher dimension (i.e. for multivariable functions) 

there corresponds a (local) tangent plane at the point of differentiability. Taking a clue from this observation the 

definition of differentiability of single variable functions can be reformulated, so that it can be generalized to 

multivariable functions. 

Definition: Let D R containing a neighborhood of point a (i.e. a  is an interior point of D ). A 

function :f DR is said to be differentiable at a D if there exist a number  such that   

                                               
0

( ) ( )
0lim

h

f a h f a h

h





  
  

the number is called derivative of the function at a , that is ( )f a  . If we put ( ) ( )L h f a h , 

obviously :L R R is a linear transformation.  

The above definition can be generalized for multivariable functions as follows: 

Definition: Let 
nD R containing a neighborhood of point a (i.e. a  is an interior point of D ). A 

function :f DR is said to be differentiable at Da if there exist a linear transformation : n L R R , 

such that  

                                                 
( ) ( ) ( )

0lim
f f



  


h 0

a h a L h

h
 

Since h is a point of 
n

R and ( ) ( ) ( )f f  a h a L h a point of R , so the norm (in 1-dimension mod) signs 

are necessary. The linear transformation L , which is unique, is called the derivative of f at a . 
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Remark: From above definition it is clear that
2:f R R  is differentiable at

2( , )a b D  R  , if   

( , ) (0,0)

( , ) ( , ) ( , )
lim 0

( , )h k

f a h b k f a b h k

h k

   


L
 ,  

The linear transformation L is given by
1 2( , )h k h k  L , 

1 21 2( , ) and ( , )x xf a b f a b   . 

Example [4]: Consider 
2:f R R  defined by

1 2 1 2( , )f x x x x , and investigate the differentiability of 

function at (0,0) .  

An easy computation yields 
1 21 2(0,0) 0 and (0,0) 0x xf f       

Let 
2(0,0) ( , )h k R , then 

  
2 2( , ) (0,0) ( , ) (0,0)

(0 ,0 ) (0,0) ( , ) ( , ) (0,0) (0 0 )
lim lim

( , )h k h k

f h k f L h k f h k f h k

h k h k 

      



 

                                                        
2 2( , ) (0,0)

lim 0
h k

h k

h k
 


 

Since
2 2h h k  , we have 0 as (h,k) (0,0)

2 2

h k
k

h k

  



. 

Showing that 
1 2 1 2( , )f x x x x is differentiable at origin. 

Analogous to differentiability of real valued functions of several real variables the differentiability of functions 

: n mf R R  can be defined [5]. 

Definition: Let 
nD R containing a neighborhood of point a (i.e. a  is an interior point of D ). A 

function : mf DR is said to be differentiable at Da if there exist a linear transformation : n mL R R , 

such that  

                                                  
( ) ( ) ( )

0lim
f f



  


h 0

a h a L h

h
 

The linear transformation L , which is unique, is called the derivative of f at pointa , denoted by ( )f  a . Every 

linear transformation 
mn

RRL →:  (with respect to standard bases of 
n

R and
m

R ) can be given in terms of 

a m n matrix, known as derivative matrix or Jacobian matrix. In particular if :f R R , ( )f a is a 1 1  

matrix, say     that is just a real number, and if
2:f R R , derivative matrix of ( )f  a   is given by a 

1 2 matrix, say 1 2  .  

The Jacobian matrix of a transformation : n mF R R , 1 1( , . . . , ) ( , . . ., )n mx x F FF , is an m n  

matrix of the first partial derivatives of coordinate functions : , 1n

iF i m  R R  with respect to 

, 1jx j n  , given by 

                                                             i

j
m n

F
D

x







 
  

F  

That is if : mf DR  is differentiable at an interior point
nD Ra ⊆∈  then Jacobian matrix of f  at a  

exists and given by a m n  matrix ( ) ( )i

j m n

f
Df

x


 
  

  

a a , which is unique. It is important to note that 

differentiability of f  at a  implies existence of all first partial derivatives of f at a  (even all directional 

derivatives of f at a  exist) but the converse need not be true. Though existence of continuous first partial 
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derivatives of f throughout some neighbourhood of a guarantees differentiability of f at a but this is only 

sufficient condition and not necessary. For example the following function is differentiable at the origin but its 

first partial derivatives are not continuous at the origin: 

Let 
2:f R R  be defined by  

 2 2

1 2 1 2 1 2
2 2

1 2

1
( , ) sin , ( , )f x x x x x x

x x

 
   
  

0   and  1 2 1 2( , ) 0 if ( , )f x x x x  0 . 

We have,  

2

1
0 0

1

1
sin 0

(0 ,0) (0,0)
(0,0) lim lim 0

h h

h
hf f h f

x h h


 

 
         


  and 

Similarly 
2

2

(0,0) 0
f

x



 


 

Let
2(0,0) ( , )h k R , then 

  
2 2( , ) (0,0) ( , ) (0,0)

(0 ,0 ) (0,0) ( , ) ( , ) (0,0) (0 0 )
lim lim

( , )h k h k

f h k f L h k f h k f h k

h k h k 

      



 

                                                                          

2 2

2 2

2 2
( , ) (0,0)

1
( )sin 0

lim
h k

h k
h k

h k

 
  

 



 

                                                                           2 2

2 2( , ) (0,0

1
lim sin

h k
h k

h k

 
   

 
 

Since function sine  is bounded by both -1 and 1, therefore
2 2

1
sin 1

h k

 
 

 
, hence above limit becomes 

 2 2

( , ) (0,0
lim

h k
h k


  , which is equal to 0, showing that function is differentiable at origin.  

We have already seen that both first partial derivatives of the function at the origin are 0. Now other than the 

origin 

1
1 2 1

2 2 2 2 2 2
1 1 2 1 2 1 2

1 1
( , ) 2 sin cos

xf
x x x

x x x x x x x

   
    
         

   

Consider above partial derivative along 1 2-axis(that is along 0)x x  , then 

1
1 1

1 1 1 1

1 1
( ,0) 2 sin cos

xf
x x

x x x x

   
           

 

Now if 1 0x  , the first term 1

1

1
2 sin 0x

x

 
  

 
 but the second term 1

1 1

1
cos

x

x x

 
  
 

 oscillates between -1 

and 1 (since for 1
1

1

0, 1 or 1
x

x
x

   depending upon the sign of 1x , and cosine function is bounded by -1 

and 1), hence this limit does not exist thereby showing that 

1

f

x




is not continuous at the origin (though 

1

(0,0)
f

x




exists and is equal to 0). 
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Similarly it can be shown that 

2

f

x




 not continuous at the origin (though 

2

(0,0)
f

x




exists and is equal to 0). 

IV.  CONCLUSION 
The concept of differentiability of functions starting from single real variable function to several real 

variables functions has been reviewed. It is hoped that article will benefit the readers to develop a better 

understanding of the differentiability concept in higher dimensions. 
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