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Abstract: The present paper deals with the determination of displacement and thermal stresses in a thick  𝑀 ≠
0 circular plate under steady temperature field. Arbitrary heat flux is applied at the upper surface of a thick  
 𝑀 ≠ 0  circular plate, whereas lower surface at zero temperature and the fixed circular edge is thermally 

insulated. Here we compute the effects of Michell function on the thickness of circular plate with internal heat 

generation. The governing heat conduction equation has been solved by the method of  integral transform 

technique. The results are obtained in a series form in terms of Bessel’s functions. The results for temperature 

change, displacement and stresses have been computed numerically and illustrated graphically. 
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I. Introduction 
     The steady state thermal stresses in circular disk subjected to an axisymmetric temperature distribution 

on the upper face  with zero temperature on the lower face and the circular edge has been considered by 

Nowacki (1957). Roy Choudhary (1972) has determined the quasi-static thermal stresses in thin circular plate. 

Sharma et al. (2004) studied the behavior of thermoelastic thick plate under lateral loads. Gogulwar and 

Deshmukh (2005) determined the thermal stresses in thin circular plate with heat sources. Kulkarni and 

Deshmukh (2008) determined quasi-static thermal stresses in steady state thick circular plate. Deshmukh et al. 

(2009) studied non homogeneous steady state  heat conduction problem in a thin circular plate and discussed its 

thermal stresses due to its internal heat generation at a constant rate. Recently Deshmukh et al. (2011) has 

determined the quasi-static thermal stresses due to an instantaneous point heat source in a circular plate 

subjected to time dependent heat flux at the fixed circular boundary.  

      In this paper thick  𝑀 ≠ 0  and thin  𝑀 = 0  circular plate is considered and discussed its 

thermoelasticity with the help of  the Goodier’s thermoelastic displacement potential function and the Michell’s 

function under steady temperature field. To obtain the temperature distribution integral transform  method is 

applied. The results are obtained in series form in terms of Bessel’s functions and the temperature change, 

displacement function and stresses have been computed numerically and illustrated graphically. Here we 

compute the effect of Michell function on the thickness of circular plate with internal heat generation. A 

mathematical model has been constructed for thick  𝑀 ≠ 0  and thin  𝑀 = 0  circular plate with the help of 

numerical illustration by considering aluminum (pure) circular plate. No one previously studied such type of 

problem. This is new contribution to the field.  

   The direct problem is very important in view of its relevance to various industrial mechanics subjected 
to heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a 

thermal power plant, gas power plant.  

    

II. Formulation of the problem 

    Consider a thick  𝑀 ≠ 0  circular plate of radius a and thickness h defined by 0 ≤ 𝑟 ≤ 𝑎,
−𝑕

2
≤ 𝑧 ≤

𝑕

2
. 

The initial temperature in a thick circular plate is zero. The heat flux –𝑄 𝑓(𝑟)  is applied on the upper surface of 

plate ( z = 
𝑕

2
 )  and the lower surface ( z = - 

𝑕

2
 ) is at temperature zero. The fixed circular edge ( 𝑟 = 𝑎 ) is 

thermally insulated. Assume the circular boundary of a thick circular plate is free from traction. Under these 

prescribed conditions, the thermal steady state temperature, displacement and stresses  in a thick circular plate 
with internal heat generation are required to be determined. 

The differential equation governing the displacement potential function 𝜙 𝑟, 𝑧  is given by, 

        
𝜕2𝜙

𝜕𝑟2 +
1

𝑟
 
𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2 =  𝐾𝝉                                  (1) 

  where K is the restraint coefficient and temperature change 𝜏 = 𝑇 −  𝑇𝑖 ,  𝑇𝑖    is initial temperature. 

Displacement function 𝜙 is known as Goodier’s thermoelastic displacement potential. 

Temperature of the plate at time t satisfying heat conduction equation as follows, 
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𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 + 
𝑞

𝑘
=  0                         (2) 

  with the boundary conditions         

          𝑇 = 0 𝑎𝑡 z = −
𝑕

2
,   0 ≤ 𝑟 ≤ 𝑎                                     (3) 

         𝜆 
𝜕𝑇

𝜕𝑍
= −Q 𝑓 𝑟   𝑎𝑡 𝑧 =

𝑕

2
, 0 ≤ 𝑟 ≤ 𝑎                                    (4) 

          
𝜕𝑇

𝜕𝑟
= 0 𝑎𝑡 𝑟 = 𝑎                                                   (5) 

 where 𝛼 is the thermal diffusivity of the material of the plate, k is the thermal conductivity of the 
material of the plate and q is internal heat generation. 

The Michell’s function M must satisfy 

       ∇2∇2𝑀 = 0                                     (6) 
where 

        ∇2=  
𝜕2

𝜕𝑟2 +
1

𝑟
 
𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2                          (7) 

 The components of the stresses are represented by the thermoelastic displacement potential 𝜙 and 

Michell’s function M as 

       𝜎𝑟𝑟 = 2𝐺  
𝜕2𝜙

𝜕𝑟2 −  𝐾𝜏 +  
𝜕

𝜕𝑧
 𝑣∇2𝑀 −  

𝜕2𝑀

𝜕𝑟2
              (8) 

       𝜎𝜃𝜃 = 2𝐺  
1

𝑟
 
𝜕𝜙

𝜕𝑟
−  𝐾𝜏 +  

𝜕

𝜕𝑧
 𝑣∇2𝑀 −

1

𝑟
 
𝜕𝑀

𝜕𝑟
                                      (9) 

        𝜎𝑧𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑧2 −  𝐾𝜏 + 
𝜕

𝜕𝑧
 (2 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2
                                                                      (10)  

and 

       𝜎𝑟𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑟𝜕𝑧
+  

𝜕

𝜕𝑟
 (1 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2
                          (11) 

where G and v are the shear modulus and Poisson’s ratio respectively. 

For traction free surface stress functions   

       𝜎𝑟𝑟 =   𝜎𝑧𝑧 = 𝜎𝑟𝑧 = 0 𝑎𝑡 𝑧 = −  
𝑕

2
                         (12) 

 

III. Solution 
3.1 Temperature change 

      To obtain the expression for temperature T(r, z), we introduce the finite Hankel transform over the variable r 

and its inverse transform defined by [9]  as 

         𝑇  𝛽𝑚 , 𝑧 =   𝑟 𝐾0 𝛽𝑚 , 𝑟 
𝑎

𝑟=0
 𝑇(𝑟, 𝑧) 𝑑𝑟                                      (13) 

 𝑇(𝑟, 𝑧)  =   𝐾0 𝛽𝑚 , 𝑟 ∞
𝑚=1  𝑇  𝛽𝑚 , 𝑧                                   (14) 

where 𝐾0 𝛽𝑚 , 𝑟 =  
𝑅0 𝛽𝑚 ,𝑟 

 𝑁
,                                 (15)            

             𝐾0 𝛽𝑚 , 𝑟 =  
 2

𝑎
  
𝐽0(𝛽𝑚 𝑟)

𝐽0 (𝛽𝑚 𝑎)
                     (16) 

Eigen value 𝛽𝑚  are the positive root of 𝐽0’ 𝛽𝑚𝑎 =  0                  (17) 

  𝛽1 ,𝛽2 … ..   are  roots of transcendental equation. 

where  𝐽𝑛  𝑥  is Bessel function of the first kind of order n.  
On applying the finite Hankel transform defined in the Eq. (13) and its inverse transform defined in (14)  to the 

Eq. (2), one obtains the expression for temperature as   

𝑇 𝑟, 𝑧 =    
 2

𝑎
  
𝐽0 (𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
∞
𝑚=1    

−𝐴(βm ,−
𝑕

2
) 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠𝑕⁡( 𝑕𝛽𝑚 )
  

                 +  
−𝑄  𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+
𝑕

2
  

𝑐𝑜𝑠𝑕⁡( 𝑕𝛽𝑚 )
 + 𝐴 𝛽𝑚 , 𝑧                                                                  (18) 

𝐴 𝛽𝑚 , 𝑧  is particular integral of differential equation (2). 

Michells function M 

Now suitable form of M which satisfy Eq. (6) is given by  

  𝑀 =   𝐽0 𝛽𝑚𝑟 ∞
𝑚=1  𝐵𝑚  𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧 +

𝑕

2
  + 𝐶𝑚  𝛽𝑚  𝑧 +

𝑕

2
 𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
                        (19) 

 where  𝐵𝑚  𝑎𝑛𝑑 𝐶𝑚  are arbitrary functions. 

 

3.2 Goodiers Thermoelastic Displacement Potential 𝝓 

Assuming the displacement function 𝜙 𝑟, 𝑧  which satisfies Eq. (1) as 

 𝜙 𝑟, 𝑧 =   
 2

𝑎
  
𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
  ∞

𝑚=1   
−𝐴 βm ,−

𝑕

2
 cosh   𝛽𝑚  𝑧−

𝑕

2
  

cosh   𝑕𝛽𝑚  
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                  +  
−Q F   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕A  βm ,
𝑕

2
 

𝜕𝑍
 

sinh  𝛽𝑚  𝑧+
𝑕

2
  

cosh   𝑕𝛽𝑚  
+ 𝐴  β

m
,−

𝑕

2
  𝑒𝛽𝑚  𝑧+

𝑕

2
 
                                      (20)                       

 Now using Eqs. (18), (19) and (20) in Eq. (8), (9), (10) and (11), one obtains the expressions for 

stresses respectively as  
𝜎𝑟𝑟

𝐾
 = 2𝐺     

 − 2𝛽𝑚
2𝐽1 ′ 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1   

             ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠 𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+  𝐴 𝛽𝑚 ,−

𝑕

2
 𝑒

𝛽𝑚  𝑧+
𝑕

2
 

 
 
 
 
 

 

             −  
 2 𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

    

           + 𝛽𝑚
2   

 2𝑣 𝐽0 𝛽𝑚𝑟  𝐶𝑚 +  𝐶𝑚 +  𝐵𝑚    𝐽1
′  𝛽𝑚𝑟  𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
  𝛽𝑚

+ 𝐶𝑚    𝐽1 ′ 𝛽𝑚𝑟   𝑧 +
𝑕

2
 𝑐𝑜𝑠𝑕   𝛽𝑚  𝑧 +

𝑕

2
   

                             (21)        

    
𝜎𝜃𝜃

𝐾
 = 2𝐺     

− 2𝛽𝑚  𝐽1 𝛽𝑚 𝑟 

𝑎 𝑟𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1  

                      ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠𝑕  𝑕𝛽𝑚  
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+  𝐴  𝛽𝑚 ,−

𝑕

2
 𝑒𝛽𝑚  𝑧+

𝑕

2
 

 
 
 
 
 

  

                       − 
 2 𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠 𝑕  𝛽𝑚 𝑕 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

              

      + 𝛽𝑚
2  𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
     2𝑣 𝛽𝑚  𝐽0 𝛽𝑚𝑟  𝐶𝑚 + 

𝐽1 𝛽𝑚 𝑟 

𝑟
  𝐵𝑚                    

                     + 𝐶𝑚  𝛽𝑚
2  

𝐽1 𝛽𝑚 𝑟 

𝑟
   𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
  + 𝛽𝑚   𝑧 +

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧 +

𝑕

2
                  (22)              

𝜎𝑧𝑧

𝐾
 = 2𝐺      

 2 𝛽𝑚
2   𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
    ∞

𝑚=1  

              ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠 𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+  𝐴  𝛽𝑚 ,−

𝑕

2
 𝑒𝛽𝑚  𝑧+

𝑕

2
 

 
 
 
 
 

 

                − 
 2 𝐽0 𝛽𝑚 𝑟 

𝑎  𝐽0 𝛽𝑚 𝑎 
×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠 𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑠𝑖𝑛𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+ 𝐴( 𝛽𝑚 , 𝑧)  

 
 
 
 

 

                + 𝛽𝑚
3  𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
       1 + 2𝑣 𝐶𝑚 + 𝐵𝑚   

                −  𝐶𝑚   𝛽𝑚
4  𝑧 +

𝑕

2
  𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧 +

𝑕

2
                     (23) 

    
𝜎𝑟𝑧

𝐾
 = 2𝐺  𝛽𝑚

2  𝐽1 𝛽𝑚𝑟    ∞
𝑚=1 

− 2

𝑎  𝐽0 𝛽𝑚 𝑎 
 

         ×

 
 
 
 
 
−𝐴 𝛽𝑚 ,−

𝑕

2
 𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧−

𝑕

2
  

𝑐𝑜𝑠𝑕  𝑕𝛽𝑚  
+   

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
𝑐𝑜𝑠 𝑕 𝛽𝑚  𝑧+

𝑕

2
  

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+  𝐴  𝛽𝑚 ,−

𝑕

2
 𝑒𝛽𝑚  𝑧+

𝑕

2
 

 
 
 
 
 

 

          +  (2𝑣 𝐶𝑚 + 𝐵𝑚  )  𝛽𝑚   𝑐𝑜𝑠𝑕  𝛽𝑚  𝑧 +
𝑕

2
  −   𝐶𝑚  𝛽𝑚

2   𝑧 +
𝑕

2
   𝑠𝑖𝑛𝑕  𝛽𝑚  𝑧 +

𝑕

2
           (24) 

In order to satisfy condition (12), solving equations (21), (23) and (25) for 𝐵𝑚   and 𝐶𝑚   one obtains  

 

Let  𝐶𝑚 = 0 
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      𝐵𝑚  =
 2

𝑎    𝛽𝑚 𝐽0 𝛽𝑚 𝑎 
 
    

𝐴 𝛽𝑚 ,−
𝑕

2
 𝑠𝑖𝑛𝑕  𝛽𝑚 𝑕 

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+  

−𝑄 𝐹   𝛽𝑚  

  𝛽𝑚 𝜆
−

1

  𝛽𝑚

𝜕𝐴  𝛽𝑚 ,
𝑕

2
 

𝜕𝑍
 

×
1

𝑐𝑜𝑠𝑕  𝛽𝑚 𝑕 
+ 𝐴 𝛽𝑚 ,−

𝑕

2
 

                                  

 

IV. Special case and Numerical calculations 
Setting 

(1) f(r)  =   𝛿 𝑟 − 𝑟0          
           𝑎 = 1𝑚, 𝑕 = 0.25𝑚, 𝑟0 = 1𝑚 

           where 𝛿 𝑟  is well known diract delta function of argument r.  

           𝐹  𝛽𝑚  =
 2  

𝑎
 𝑟0  𝐽0( 𝛽𝑚𝑟0) 

(2) 𝑞 = 𝛿 𝑟 − 0.5  𝑧 

       𝑞 =   𝑟
𝑎

𝑟=0
 
 2

𝑎
  
𝐽0(𝛽𝑚 𝑟)

𝐽0(𝛽𝑚 𝑎)
 𝛿 𝑟 − 0.5  𝑧 𝑑𝑟 

            = 
 2

𝑎
 

 𝐽0  𝛽𝑚 0.5  0.5  

 𝐽0  𝛽𝑚 𝑎 
 𝑧 

For thick plate 𝑕 = 0.25𝑚   and for thin plate 𝑕 = 0.2𝑚 .   
 

Material Properties 

 The numerical calculation has been carried out for aluminum (pure) circular plate  with the material 
properties defined as 

       Thermal diffusivity 𝛼 = 84.18× 10−6  𝑚2𝑠−1 ,  
          Specific heat 𝑐𝜌 = 896 𝐽/𝑘𝑔,    

          Thermal conductivity k = 204.2 W/mK, 

       Shear modulus 𝐺 = 25.5 𝐺 𝑝𝑎, 
       Poisson ratio 𝜗 = 0.35.   
 

Roots of Transcendental Equation 

 The 𝛽1 = 3.8317,  𝛽2 = 7.0156,  𝛽3 = 10.1735,  𝛽4 = 13.3237,  𝛽5 = 16.4706,𝛽6 = 19.6159  are the 

roots of transcendental equation 𝐽0’ 𝛽𝑚𝑎 = 0. The numerical calculation and the graph has been carried out 

with the help of mathematical software Matlab.  

 

V. Discussion 
 In this paper a thick  𝑀 ≠ 0  and thin  𝑀 = 0  circular plate is considered and determined the 

expressions for stresses due to internal heat generation within it and we compute the effect of Michell function 

on the thickness of circular plate with internal heat generation along the radial direction. As a special case 

mathematical model is constructed for considering aluminum (pure) circular plate with the material properties 

specified above.  

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1  Radial stress function 
σrr

K
  for  𝑀 = 0 .                   Fig. 2  Radial stress function 

σrr

K
  for  𝑀 ≠ 0 . 
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 From Fig. 1 and 2, it is observed that due to Michell function the radial stress function  𝜎𝑟𝑟   increases 

towards the lateral surface of thick circular plate along radial direction, it  develops  tensile stress in the radial 

direction. 

 From Fig. 3 and 4, it is observed that due to Michell function the angular stress function  𝜎𝜃𝜃  increases 

towards the lateral surface of thick circular plate along radial direction, it develops  tensile stress in the radial 

direction. 

 From Fig. 5 and 6, it is observed that due to Michell function the axial stress function  𝜎𝑧𝑧  increases 
towards the lateral surface of thick circular plate along radial direction, it develops tensile stress in the radial 

direction. 

 From Fig. 7 and 8, it is observed that due to Michell function the stress function  𝜎𝑟𝑧  decreases towards 

the lateral surface of thick circular plate along radial direction, it develops compressive stress in the radial 

direction.  

 

VI. Conclusion 
 We can summarize that in case of steady state behavior the radial stress function 𝜎𝑟𝑟 , angular stress 

function  𝜎𝜃𝜃  and axial stress function  𝜎𝑧𝑧   increases towards the lateral surface of thick circular plate along 

radial direction. Also the stress function  𝜎𝑟𝑧  decreases towards the lateral surface of thick circular plate along 

radial direction. The Michell function act as a moderant with the thickness of circular plate.  

 The results obtained here are useful in engineering problems particularly in the determination of state 

of stress in thick circular plate and base of furnace of boiler of a thermal power plant and gas power plant. 
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