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Abstract: In this paper a new dogleg method for solving the trust region subproblem where convergence is 

based on constructing two paths is presented.  The condition on the paths is incorporated into an algorithm to 

determine the optimum point of a smooth function.  Numerical experiments with some classical problems 

showed that the new dogleg method is robust and efficient. 
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I. Introduction 
 Trust region methods for optimization problems have become very popular over the last decade.  One 

possible explanation of this popularity is the fact that the method has wide application in many fields, such as 

science, engineering and economy, due to its strong global convergence and robustness ([1], [2], [3], [4]). 

Consider an unconstrained optimization problem. 

 min   nwwf :      (1.1) 

where n  is an n-dimensional Euclidean space and nf : is a twice continuously differentiable 

function on
 

n . Trust region strategy for solving problem (1.1) is based on the following outline: 

 Given a bound k , called the trust region radius, and a current iterate 
n

kw  to the solution of 

(1.1), define a model n

k : of the objective function  wf , in the  region 

   kkkkk wwww  ::, , called the trust region,  surrounding the current iterate kw  where 

the model is trusted to be accurate representation of  wf .  The model is often assumed to be the quadratic  

                 sBsgss k
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for some symmetric matrix kB , where )( kk wfg  is the gradient of the objective function at the current 

approximate solution kw .  

 Compute a step ks  that sufficiently reduces the model k and such that  

        kkk sw  . This is achieved by solving the subproblem: 

                     
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min      (1.3) 

                  such that      ks                                     (1.4)      

 Then compute the ratio 
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Then the trust region radius k  and the iterate kw
 
are updated according to the value of :kR  
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where the parameters 1, 2, 1 and  2 satisfy  

  10 21       and   10 21     (1.2) 

Under some assumptions, this algorithm has been proved to be  globally convergent to a local optimum ( [1],[4] 

,[5]).   

  Problem (1.3)-(1.4) which involves the computation of the step ks  such that ks   is called trust region 

subproblem. The problem is a very significant optimization problem(which involves solving a constrained 

optimization problem).  As a result a lot of research efforts are still being directed towards finding better  

algorithms of solving the trust region subproblem. 

 

 

Since each iteration of a trust region algorithm requires to solve(exactly or in exactly) the trust region 

subproblem  (1.3)-(1.4), finding efficient solver for the trust region subproblem is very important. The trust 

region subproblem (1.3)-(1.4) has been studied by many authors. The following lemma is well known(for 

example see [ 6 ] and [ 7 ]): 

 

Lemma 1.1 

A vector 
ns *  is a minimizer of  

            
n

s
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min      (1.5) 

                  such that      ks                                     (1.6) 

if and only if there exists 0*  such that 

   gsIB  **         

   0**  s         

  IB *  is positive semi-definite      

If  IB *  is positive definite, ks  is unique. 

 

         However, there is no finite method for determining such an  . Most algorithms find an approximate 

solution of problem (1.3)-(1.4). Gould et al([8]) states that although in principle we are seeking the optimal 

solution to the subproblem, it is enough for global convergence purposes to find an approximate solution ks  

that lies within the trust region and gives a sufficient reduction in the model. Research efforts are still being 

directed to finding ways of computing approximate solutions that are good enough to guarantee global 

convergence of the overall trust region algorithm.  Toint ([9]) states that whatever method chosen for computing 

the approximate minimizer, 1ks must compare favorably to a specific benchmark, the Cauchy point method.  

That is, the sufficient reduction can be quantified in terms of the Cauchy point method. 

The Cauchy point, 
cp

ks  is defined [18]  as 
p

kk s  where  
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 such that ks    (2.10) 

and  
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The solutions [11]  to these problems are 
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The problem with using the Cauchy-point at each iteration is that it is always in the steepest descent direction 

and therefore, performs poorly in terms of speed.  

Another method that is currently being used as an improvement to the Cauchy point approach is the dogleg 

method.  

 

II. The Dogleg Method 
The dogleg approach to solving the trust region subproblem originated from Dennis and Schnabel 

([10]): The idea is as follows: 

Rather than finding a point )(1 kkk sww   on the )(s  curve such that kkk ww 1  as required by 

Lemma 1.1, the dogleg method approximates the curve by a piecewise linear function connecting the origin kw , 

the Cauchy point 
cps , the Newton direction 

Ns  as indicated in the figure below 

 

Then the method chooses 1kw  to be the point on this polygonal arc such that kkk ww 1 , unless 

  kkk wfB 1
, in which case 1kw  is the Newton point.  Schnabel argued that:  If the curve is chosen 

in such a way that the distance from the origin kw to 
cps  increases monotonically as one moves along the 

piecewise linear curve, then for any  kk wfB  1
, there is a unique point 1kw  on the curve such that 

kkk ww 1 .  This makes the process well defined.  Thus the process will be reasonable if the value of 

the model )( swkk   decreases monotonically as s  goes along the curve from kw  to 
cps  and to P and to

Ns . 

To pursue this objective Schnabel ([10]) showed that the Cauchy point 
cps  is not further away from kw  than 

the Newton point
Ns .  Thus he showed that  

 
NNcp sss    

where  < 1.  Based on this argument Schnabel proposed the choice of a point P on the Newton direction to have 
the form 

  kkk wfBwp  1       (2.14) 

for some   (, 1).  Then using heuristic he set, 

  = 0.8 + 0.2        (2.15) 
and called this method dogleg method.  The algorithm we propose in this pepper is close to the Schnabel’s 

ideals but one that removes heuristic in the choice of the step length . 
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III. A New Dogleg Method 

 In the dogleg approach we observe that the piecewise line connecting the Cauchy point 
cps and the 

Newton point 
Ns can leave the trust region through two points instead of one point as shown in the diagram 

below: 

 
 

The points S1 and S2 are the points through which the path could leave the trust region, and if they are such that 

the model of the objective function decreases as we move along the path from kw  to
Ns , then each of the 

points is a candidate for the next iterate whenever the constrained optimum lies outside the trust region, that is 

whenever kkk gB 1
. 

Our proposal takes these two paths into consideration.  One path involves two points, the points 
cps  and 

Ns  

while the other paths involves three points, the points
cps ,        P (=  

Ns ) and
Ns .  Thus, if we imagine the 

minimizing step )( ss  as a function of the trust region radius, then )( sw  traces a curve in 
n  

that starts from w  (when 0 ) and stops at  TwfHw  1
  when  TwfH  1

.  We can then 

approximate the curve either by two straight line segments or three line segments with the same end point.  We 
thus define the path by 
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We make the same assumption in Schnabel ([10]) that although the distance increases as we proceed along the 

piecewise linear move, the value of the model decreases all the way. 

 

Theorem 3.1 

Assuming that B is positive definite, then  

(i)  )(tsk  is a decreasing function of  t, and  

(ii)  ts  is an increasing function of  t. 

 

Proof: Using (2.1), 

(i) We only need to show that     )1,0(0  tforts
dt

d
k .  Using equation (2.1), we will have 
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Thus     0ts
dt

d
 

i.e,   )(tsk  is a decreasing function of  t. 

(ii) Here we need to prove that   )1,0(0  tforts
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Now by Cauchy Schwartz’s inequality,  VUVU T   for any vectors U and V. 

Thus,  
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Using (3.5) in (3.2) we have 

   0ts
dt

d
 

Thus our construction of the dogleg path satisfies the motives behind the Dennis and Schnabel’s construction.  

Thus as d moves steadily away from the current point wk to the full Newton update 
Nsw , the model values 

k  steadily decrease along the whole path.  It is therefore clear that )(ts will intersect the trust region 

boundary s  at exactly one point if the unconstrained optimal point is outside the trust region.  Since  k

is decreasing along the path, the new direction is either 
Ns if Ns  or the point of intersection of the path 

and the boundary.  Putting this together, we present the following algorithm for solving approximately, the trust 

region subproblem. 
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IV. Numerical Examples 
We tested our algorithms on a set of test problems from CUTE collection established by Bongartz, 

Conn, Gould and Toint ([11]). We choose the test problems and their initial points from the literature ([11]) with 

some of them highly nonlinear. The stopping criterion is

810kg
. Our computational results for the test 

problems are summarized in Table 4.1 – 4.3, where we compared our method with the standard dogleg method. 

In table 4.3 we give particularly the results of three test problems that, according to Verdi([12]), are often used 

to test minimization algorithms. There in table 4.3 ,comparisons of our method, standard dogleg, with Dennis-

Mei’s MINOP, Powell’s  MINFA, Davidon’s OCOPTR, Fletcher’s VM01 and Verdi’s FMIN are made. 

  
Example 4.1   Wood Function 
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Example 4.3 Powell’s Function 

Minimize             Txxxxxxxxxxf 1,0,1,3,102510 0
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Example 4.4    2211
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Example 4.5 Rosenbrock function 

Minimize        1,2.1,1100 0

2

1

22

12  xxxxxf  

Numerical results are reported in tables 4.1 – 4.2 

 

4.1   PRESENTATION OF NUMERICAL RESULTS 

      The first column in table 4.1 is the name of the test problem, and the second column is the number of 

variables n.  For the NEW DOGLEG method and the standard dogleg method (SDM) we record, among other 

things, the number of iterations. The first column in table 4.2 is also the name of the test problem, and the 

second column is the number of variables n.  For the NEW DOGLEG and the standard dogleg method we also 

record the number of iterations, the number of function evaluations and the number of gradient evaluations.   

 

Table 4.1 COMPARISON WITH STANDARD DOGLEG METHOD 
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Table 4.2    Comparisons with Dennis-Mei’s MINOP, Powell’s  MINFA,   Davidon’s OCOPTR, Fletcher’s 

VM01 and Verdi’s FMIN are made. 
Problem 

Name 

Starting Point New 

Dogleg 

method  

 

MINOP 

 

MINFA 

 

OCOPR 

 

VMM01 

PMIN 

















999253.0

999630.0

999619.0

















1

1

1

























1

0
1

3





















0

0

0

0
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WOOD  FUNCTION (-3, -1, -3, -1) 

 

36(151) 71(61) 

 

117(117) 

 

72(50) 

 

129(129) 

 

66(44) 

 

ROSENBROCK 

FUNCTION 

(-1.2,1) 

 

22(74) 28(25) 

 

37(37) 

 

54(43) 

 

28(28) 

 

27(18) 

 

POWELL’S 

FUNCTION 

(3,-1,0,1) 

 

37(116) 37(35) 

 

 

** 

 

** 

 

** 

33(28) 

 

** (Not available) 

 

4.2    Remarks on Numerical Results 

Table 4.1 Presents the main results obtained by the new dogleg algorithm while tables 4-2 and 4.3 

compares the new results with recently reported results.  A general observation in these tables is that the 

performance of the new dogleg method compares favorably with the standard dogleg method.  An important 

observation is that the new dogleg method requires far less number of iterations to obtain the optimum than 

some recently reported results and this translates into smaller computer times. Chh-Chen Lin and Jorge J. More 

[13] noted that fewer number of iterations often translates into smaller computing times.   Example 5 is regarded 

in literature as a tricky problem because it is often difficult to minimize.  But the new dogleg method solved this 
problem with remarkably few numbers of iterations. 

 

V. Conclusion 
 In this paper, we presented a new dogleg method for solving trust-region subproblem.  The results 

show that the new method is effective, accurate and converges in fewer iterations. 
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