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 Abstract: The paper is devoted to the stability of a class of quasi-linear parabolic distributed parameter 

system (DPS). By using the linear matrix inequality (LMI) and Lyapunov functional methods, a sufficient 

condition is derived to ensure the uniformly stability of quasi-linear parabolic DPS. The  numerical simulations 

are presented.  
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I. INTRODUCTION  
DPS is called the infinite-dimensional systems, whose dynamics are described by partial differential 

equations, delay equations, or functional differential equations depended on infinite dimensional spaces[1-3]. It 
should be pointed out that, in past decades, the stability analysis problem for parabolic DPS has received very 

more research attention, and many authors have discussed the stability problem [4-8]. It should be pointed out 

that, up to now, the stability analysis problem for quasi-linear DPS has received very little research attention, 

despite its practical importance. 
In this paper, we consider via the Lyapunov functional and LMI approach a case of DPS described by 

the quasi-linear parabolic partial differential equation (PDE). The nonlinear term in system dynamics is assumed 

to be norm bounded, which shows that the assumptions are not so restrictive.  

The outline of this paper is as follows. The system model is described in Section 2. The main results 

are derived in Section 3. We give a numerical example to illustrate the usage of the theoretical results in Section 

4. Conclusions are given in the last section.  

Notations:  denotes a compact set with smooth boundary   and measure ( )   in 
lR . 

 2 , lL R R means the space of real Lebesgue measurable functions on R .   denotes the Euclidean 

norm of a vector or its induced matrix norm. 2L
f denotes the norm on 

2 ( )L  , i.e., 
2

2 2

L
f f dx


  , where 

{ } lx x R       is a bounded region with the smooth boundary  ,   is a known constant. 

The superscript T  denotes the transpose.   indicates the gradient operator. For the vector function 

1( , ) ( ( , ) ... ( , ))T

np x t p x t p x t ( , 0)x t  , define 

T

1 2

( , ) ( , ) ( , )
( , ) ....i i i

i

l

p x t p x t p x t
p x t

x x x

   
   

   
， 1,2, , .i l   

Denote  
T

1 2( , ) ( , ) ( , ) .... ( , )np x t p x t p x t p x t     and 2

1

2 2

1 1

( , ) ( ( ( , )) d )
n l

iL
i j j

p x t p x t x
x

 


 


 . For 

1 2( ... ) , 1,2, ,T

i i i ilY y y y i n    and matrix 1 2( ... )T

nY Y Y Y , we denote 

 1 2
1 2

1 2

.... , .... .
Ti i il

i n

l

y y y
Y Y Y Y Y

x x x

  
         

  
   0 0ij n n

A a


    denotes A is 

a positive (negative) definite matrix, i.e.,  0 0Tx Ax    for any 
nx R , 

0x  .   0ij n n
A a


  denotes A  is a semi-positive definite matrix, i.e., 0Tx Ax   for any 

, 0nx R x  . A B  (respectively, A B ) means the matrix A B  is a semi-positive definite matrix 

(respectively, positive definite). I  means a identity matrix with compatible dimension. For matrix 
n nA R  , 

max ( )A  indicates its biggest eigenvalue. The symbol rank( ) indicates the rank number of matrix. 
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II. PROBLEM FORMULATION 
Consider the quasi-linear parabolic PDE systems of the form  

 
( )

( ( )) ( ) ( ) ( ( ))
p x t

D p x t F p x t E Ap x t f p x t
t

 
          


                (1) 

where 
1( , ) ( ( , ) ... ( , ))T n

np x t p x t p x t R   is the state vector.  ij n l
D D


 ,  ij n n

A a


 and 

 ij n l
F F


  are known real constant matrices,  1, 1, , 1

T
E    is a l-dominations column vector. 

1

( , ) ( , )
( , ) ( ... )Ti i

i

l

p x t p x t
p x t

x x

 
 

 
, 1,...,i n . ( )i

i j n l

j

p
D p D

x



 


  is Hadamard product of 

matrix D  and ( , )p x t . ( ) ( )i
i j n l

j

p
F p x t F

x



  


 is Hadamard product of matrix F  and ( , )p x t . 

The vector function 
1

1 1( ( , )) ( ( ( , )) ... ( ( , )))n T nf p x t f p x t f p x t R  is smooth. We 

suppose that the vector function ( ( ))f p x t  satisfies the following condition 

( ( )) ( )f p x t p x t   ,                                                                 (2) 

where   is a known positive constant. 

The initial and boundary conditions of Eq. (1) are, respectively, as follows  

( 0) ( )p x x x                                                                     (3) 

( )
0 ( ) [0 )

p x t
x t

n

 
    


                                                (4) 

where n


 indicates outward unit normal on  , ( )x  is an appropriate smooth vector function on  . 

Obviously, the origin O is an equilibrium point. System (1) with (3) and (4) has a unique global 

solution [7]. Denote that  2

,
max ij ij

i j
F D   ,  

,
min ij

i j
D D . 

Assumption 1:                  0  .                                                                                                                         (5) 

Assumption 2:                  1D  .                                                                                                                         
(6) 

First give the following lemmas, which will be frequently used in the proofs of our main results in this 

paper. 

Lemma 1 
[9]. The LMI  

   

   
0

T

Q u S u

S u R u

 
 

 
,where        ,T TQ u Q u R u R u  , and  S u  

depend on u , is equivalent to any one of the following conditions: 

(L1 )           10, 0;TR u Q u S u R u S u   ; 

(L2 )           10, 0.TQ u R u S u Q u S u    

Lemma 2 
[10]. Given real matrices with compatible dimension      1 2 3

1 2 3, ,ij ij ijm n m n m m
Q q Q q Q q

  
    

and 3 3 0TQ Q  . Then, for any constant 0  ,  
1 1

2 1 1 2 1 3 1 2 3 2

T T T TQ Q Q Q Q Q Q Q Q Q     . 

Lemma 3
[9]

 If ( , )p x t  is a solution of (1), then 

    ( , )Tp x t D p dx D p p Edx
 

                                                         (7) 

where  1 1

T

n np p p p p p          ,

22

1

T

i i
i i

l

p p
p p

x x

    
      
      

  , 

      1 1 1 n n nD p p D p p D p p             ,  1

T

nD D D  ,  1

T

i i ilD D D  ,   

1, ,i n  ,  1, ,1
T

E   . 
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III. MAIN RESULTS 
The main results of this paper are given as follows. 

Theorem 1 Given matrices A .Under condition (5)and (6) the null solution of the sliding motion equation (1) 

with (3) and (4) is uniformly convergent to zero, i.e. lim ( ) 0,
t

p x t x


   , if there exist scalars 0  , and 

a matrix K such that the following linear matrix inequality 

 ( ) (2 ) 0TA A I                                                                                                      (8) 

holds. 

Proof  Define a Lyapunov-Krasovskii functional candidate by 
1

( ) ( ( )) ( )d
2

TN t h p x t p x t x


   . 

Calculating the time derivative of functional ( )N t  along the trajectory of Eq. (1) yields  

     

( ) 1 1
( ) ( ) ( ) ( )

2 2

1
( ) ( )

2

T T

T

N t
h p x t p x t x h p x t p x t x

t t t

h D p p x t p x t D p x

 



 
     

 

       

 



d
d d

d

d 

    1
( ) ( ) ( ) ( )

2

TT Th E F p x t p x t p x t F p x t E x


        d 

 

 
1

( ) ( ) ( ) ( ( ))
2

T T Th p x t A A p x t x h p x t f p x t x
 

       d d        

   ( ) ( ) ( )

1
( )(( ) ( ) ( ( ))

2

T T

T T T

h p x t D p x h p x t F p x t E x

h p x t A A h p x t f p x t x

 

 

       

     

 

 

d d

d

 

                                                      (9) 

From Lemma 3, we have 

    ( )Th p x t D p x h D p p E x
 

        d d                                        (10) 

In view of Lemma 2 and (4), we have 

T 1
 ( ) ( ( )) ( ) ( ) ( ( ( , )) ( ( , )))

2

1
( ) 1 ) ( )

2

( T T

T

h p x t f p x t x h p x t p x t f p x t f p x t x

h p x t Ip x t x

 



     

   

 



d d

d（

     (11) 

In addition, we have 

 
1 1

2 2

1 1

2 2 2

1 1 1

( )
( ) ( ) ( )

( )1
( ( ( )) ( ) )

2

( )1
( ( )) ( )

2

1
( ) ( )

2

n l
T i

i ij

i j j

n l
i

i ij

i j j

n n l
i

i ij

i i j j

T

p x t
h p x t F p x t E x h p x t F x

x

p x t
h p x t x F x

x

p x t
h p x t x h F x

x

h p x t p x t x h

 
 

 
 

 
  

 

  
       

 
  



 
  



   

  

  

   



d d

d d

d d

d



 F p p E x   d

                     (12) 

where  2

ij n l
F F


 . Substituting (10)，(11) and (12) into (9) gets 
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    

    

 

( ) 1
( ) ( )

2

1
( ) ( ) (1 ) ( ) ( )

2

1 1
( ) ( ) (2 ) ( ) ( ) ( )

2 2

T

T T

T T T

N t
h D p p E x h p x t p x t x h F p p E x

t

h p x t A A I p x t x h D F p p E x

h p x t A A I p x t x h p x t p x t x



  

  

 

 

           

           

         

  

 

 

d
d d d

d

d d

d d

 

   

In view of Lemma 1 and (8), we have 2 2

2 2( ) 1
( ) ( )

2L L

N t
h p x t h p x t

t
     

d

d
.Integrating the above 

form from T  to t  gets 2 2

2 21
( ) ( ) ( ) ( )

2

t t

L LT T
N t h p x s ds h p x s ds N T        .Obviously, 

( )N T is bounded. From the definition of functional ( )N t , one obtains ( ) 0, 0N t t   .  So from (5) one 

gets that ( )N t is bounded, 2

2
( )

LT
p x s ds



    and 2

2
( )

LT
p x s ds



    .  These imply that 

2

2
( )

L
p x s  and 2

2
( )

L
p x s   are bounded, 2

2

1( ) (0, )
L

p x s L    and 2

2

1( ) (0, )
L

p x s L    . 

Furthermore, we can prove that (see [11]) 2

2

1( , ) (0, )
L

d
p x t L

dt
      and 2

2

1( , ) (0, )
L

d
p x t L

dt
   .     

Based on that Barbalat theorem (see[12]), 2

2

1( , ) (0, )
L

p x t L  , 2

2

1( , ) (0, )
L

p x t L   , 

2

2

1( , ) (0, )
L

d
p x t L

dt
   and 2

2

1( , ) (0, )
L

d
p x t L

dt
   , one obtains 2

2
lim ( , ) 0

Lt
p x t


 , 

2

2
lim ( , ) 0

Lt
p x t


  . 

Based on that 2

2
( , )

L
p x t and 2

2
( , )

L
p x t are bounded, ( , )p x t  is smooth,   is bounded and its 

boundary   is smooth, we have ( , )p x t  and ( , )p x t  are bounded on R . So ( , )
L

p x t  and 

( , )
L

p x t   are bounded. Thus using Hōlder inequality (see[13]) we have that for 2  , 

2

( 2)/ 2/
( , ) ( , ) ( , )

L L L
p x t p x t p x t

  




 and 2

( 2) / 2/
( , ) ( , ) ( , )

L L L
p x t p x t p x t

  




    . 

Due to 2 2

2 2
lim ( , ) 0, lim ( , ) 0

L Lt t
p x t p x t

 
   , we have  

lim ( , ) lim ( , ) 0
L Lt t

p x t p x t 
 

   .                                                     (13) 

Based on Sobolev inequality (see [13]), we have that if l  , there exists constant   associated with 

, andl  such that 

 ( , ) ( , ) ( , )
L L L

p x t p x t p x t     .                                                (14) 

From (13) and (14), one obtains lim ( , ) 0
Lt

p x t 


 . This implies lim ( , ) 0
t

p x t


 . The proof completes. 

 

IV. SIMULATION RESULTS 

Consider the parabolic PDE systems (1) with 2n   2,m  1l   10    
1.5

,
1.2

D
 

  
 

 

1.2

1
F

 
  

 
, 

0.6310 1.9

0.6085 0.4575
A

 
  
 

，

2sin( ( , ))

1

1 2

( , )

( ( , )) 30
sin( ( , ) ( , ))

10

p x t
p x t e

f p x t
p x t p x t

 
 
 

 
 

. Select 8  . 

Obviously, ( ( , )) ( , )f p x t p x t  holds. 

The initial and boundary value conditions are given as follows: 
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1 2 2

1 3

0 0116( sin( ( 10)))
10

( )

0 0092 ( ( ( 10)))
10

x x

x

x sin x










 
  

  
   
 

 , ( 10 10)x  , 

and 

( )
0 10 [0 )

p x t
x t

x

 
       


 

By simply computing, we can obtain that 0.06 0    and 1.2 1D   .Thus, Assumption 1 and 

2 are satisfied. 
13.2413 2.9039

2.9039 15.3006

  
   

  
, then max ( ) 11.1899 0     . Fig.1 and Fig.2 present 

the state variables of the system. We can see that the system is stable.  
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p
1
(x

,t
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Figure 1 Trajectory of state variable p1(x,t)  
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x

p
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Figure 2 Trajectory of state variable p2(x,t) 

 

V. CONCLUSIONS 
The stability problem of quasi-linear parabolic DPS is discussed via the Lyapunov-Krasovskii 

functional and the LMI approach. The nonlinear term in the system is only required to be norm-bounded. A  
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new simple sufficient condition of uniformly stability is presented, which is easily verifiable. These works will 

have some theoretical significance in stability analysis of quasi-linear DPS. 
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