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Abstract: A volume flexible inventory model is developed. This model is developed for deteriorating item by 

assuming that the deterioration rate is depend on a parameter and time. The production rate is variable, 

production cost become a function of production rate, unit cost depending upon material cost, labour cost and 

tool cost. The demand rate is increasing exponentially shortages are allowed. Cost minimization technique used 

to find out optimal values for different inventory variables. 
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I. Introduction: 
  This study presents a production inventory model with a time dependent random deterioration function 

and increasing exponentially demand over a fix time horizon with the finite. The shortages allow and excess 

demand is backlogged. Expressions for optimal parameter are obtained .We also obtained Production scheduling 

period, maximum inventory level and total average cost. 

 An inventory system the effect of deterioration plays an important role. Deterioration is derived as 

decay or damage such that the item cannot be used for its original propose. Foods, pharmaceuticals, chemicals, 

blood, drugs are a few examples of such items in which sufficient deterioration can take place during the storage 

period of the units and the importance of this loss must be taken into account when analyzing the system. 

 In this paper we present a realistic inventory model in which the production rate is variable and demand 

is an exponentially increasing function time and deterioration is random function says that deterioration of an 
item depends upon the fluctuation of humidity, temperature, etc. It would be more reasonable and realistic if we 

assume the deterioration function   to depend upon a parameter "" in addition to time t . 

 When describing optimum policies for deteriorating items Ghare and Schrader (1963) proposed a 

constant rate of deterioration and constant rate demand. In recent year, inventory problem for deterioration items 

have been widely studied after Ghare and Schrader (1963), Covert and Philip (1973) formulated the model for 

variable deterioration rate with two parameters Weibull disturbation Goswami and Chaudhuri (1991), Bose et 

al (1995) assumed either instantaneous or finite production with different assumption on the pattern of 

deterioration. 

 Balkhi and Benkheroot (1996) considered a production a production lot size inventory model with 
arbitrary production and demand rate depends on the time function. 

 Bhunia and Maiti’s (1977) model to formulate a production inventory model. Chang and Deve (1999) 

investigated an EOQ model allow shortage and backlogging. It is assumed that the backlogging rate is variable 

and dependent on the length of waiting time for the next replenishment. Recently, many researchers have 

modified inventory policies by considering the “ time proportional partial backlogging rate” such as Wang 

(2002), Perumal (2002), Teng et al (2003), Skouri and Papachristos (2003) and Kun-Shan et al (2005) etc. 

In the Classical Economic Production Lot Size(EPLS) model, the production rate of a machine is 

regarded to be pre-determinded and inflexible1.Alder and Nanda, Sule, Axsater and Elmaghraby, Muth and 

Spearmann extended the EPLS model to situations where learning effects would induce an increase in the 

production rate. Proteus7, Rosenblat and Lee and Cheng considered the EPLS model in an imperfect 

production process in which the demand would exceed the supply. Schweitzer and Seidmann adopted, for the 

first time, the concept of flexibility in the machine production rate and discussed optimization of processing 
rates for a FMS (flexible manufacturing system). Obviously, the machine production rate is a decision variable 

in the case of a FMS and then the unit production cost becomes a function of the production rate. Khouja and 

Mehrez and Khouja extended the EPLS model to an imperfect production process with a flexible production 

rate. Silver, Moon, Gallego and Simchi Levi discussed the effects of slowing down production in the context of 

a manufacturing equipment of a family of items, assuming a common cycle for all the items. Gallego extended 

this model by removing the stipulation of a common cycle for all the items. But the above studies did not 

consider the demand rate to be variable. It is a common belief that large piles of goods displayed in a 

supermarket lead the customers to buy more. Volume flexibility is a major component in a FMS. The 
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manufacturing flexibility which is capable of adjusting the production rate with the variability in the market 

demand is known as volume flexibility. 

 S. Sana and K. S. Chaudhuri, consider a volume flexible manufacturing system for a deteriorating 

item with an inventory-level-dependent demand rate. They find tha the demand rate remains stock-dependent for 

some time and then becomes a constant after the stock falls down to a certain level. Several factors like limited 

number of potential customers and their goodwill, price and quality of the goods, locality of shop, etc. can be 

accounted for the change in the demand pattern 
 This model is developed for deteriorating item by assuming that the deterioration rate is depend on a 

parameter and the production rate is variable . The demand rate is increasing exponentially. Cost minimization 

technique used to find out optimal values for different inventory variables. 

 

II. Assumption and Notation: 
 The mathematical model of the production inventory problem considered herein is developed on the 

basic of the following assumptions-: 

(a) A single item is considered over a prescribed period of T units of time, which is subject to a time 

dependent Random deterioration rate. 

(b) Demand rate D (t) is known and increasing exponentially
tAe)t(D  , 0t  , A is initial 

demand,   is a constant governing the increasing rate of demand. 

(c) Production rate K is variable. 

(d) Deterioration of the units is considered only after they have been received into the inventory. 
(e) No replacement or repair of deteriorated item is made during given cycle. 

(f) Shortages are allowed and backlogged. 

Notation : 

(1) I(t) = Inventory level at any time t, 0t   

(2) ( )t   , the items deterioration rate is random. 

(3) Im = Maximum inventory level. 

(4) Ib = Unfilled order backlog. 

(5) ( )
G

K R HK
K

     =  Unit production cost,  𝜂 𝐾 = 𝑅 +
𝐺

𝐾
+𝐻𝐾  is depends upon the 

production rate, where R, G and H are the material cost, labour cost and tool or dye cost respectively. 

(6) C= Set up cost 
(7) CD = The cost of a deteriorated item. 

(8) Ch = Inventory carrying cost per unit per month. 

(9) CS = Shortage cost per unit. 

(10) T = )( 4321 tttt   is the cycle time. 

(11) CT = The total average cost of system.    

 

III. Mathematical Model : 
 Initially, the inventory  level is start with  zero. The  production inventory level starts at time t=0 and  

it reaches at maximum inventory  level Im after t1 time unit .At that time  production  is stopped and the 

inventory level is decreasing continuously and reaches  zero at time t2,at this time shortages start developing at 

time t3 it reaches to maximum shortage level Ib . This time fresh production start to remove backlog by the time 
t4 . Here our aim is to find out the optimal values of  t1, t2, t3 , t4, Im & Ib that minimize the total average cost (CT) 

over the time horizon (0,T). 

 

 

The differential equation governing the stock status during the period Tt0   can be written as 
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( )
( ) ( ) tdI t

tI t K Ae
dt

     ,          
10 tt 
            

                                                 … (1) 

( )
( ) ( ) tdI t

tI t Ae
dt

    ,      
20 tt                                                               …(2) 

 

( ) tdI t
Ae

dt

   ,           30 tt                                                                  …(3)             

( ) tdI t
K Ae

dt

  ,  
40 tt                                                                                      … (4) 

 

Using the boundary condition 

   I(t) = 0 at t = 0, T and t1 + t2                                                                        … 

(5) 

   I(t2) = Im and –I( t3) = Ib                                                                        … (6) 

Solution of equation (1), (2), (3) and (4) by adjusting the constant of integration using boundary condition are 

given by 
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10 tt                                                                                               …(7) 

 )(tI A
2

2
2

2
( ) 2 2 2

2

( ) ( ) ( )
1

2

t
t t te

e


       

  


  

   
 

 

  
2

2
( ) 2

2

( ) ( ) ( )
1

2

t
te t t

e


       

  


 

    
 

,
20 tt                             … (8) 

 )(tI )1( te
A 


 , 30 tt                                   … 

(9) 

           4

4( ) ( ) ( )
ttA

I t K t t e e



    , 40 t t                                     … (10) 

   The inventory level of production start initially at time unit t = 0 to t = t1 at maximum level Im is obtained 
using equation (5), (7) and (8). 
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1 1

2
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A e

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
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                                     … (11) 

and after time 1t  the production is stopped and stock level is decreasing continuously and become zero at time 

t=t2 at that time shortages are develop and reaching to Ib at time 3tt    is obtained by equation (6) 

     3 4

4(1 ) (1 )
t t

b

A A
I e Kt e

 

 
                                                                                 … (12) 

 Thus by equation (11) we observed that 1t  and 2t  are dependent so they are related by the equation   

     2 1( )t f t                                                                … (13) 

and by equation (12) 3t  and 4t  are dependent to each other so related by the equation  

      3 4( )t g t                                                                      … (14) 
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 Total amount of deteriorated units )I( D  during the period )T,0(  is given by  
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                                                                                                                         … (15) 

During period ),0( T  total inventory carrying  )( HI  can be obtained as  
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                                                                                                                   … (16) 

Total amount of shortage units (Is) during the period (0, T) is given by 
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                                                                                                           … (17) 

Total production KT=

1 4

0 0

t t

Kdt Kdt   

                                  = 4K( )tt t  

Production cost       = 4K (K)( )tt t   

                                  =
2(RK G HK  ) 4( )tt t  

Hence the total average cost of the inventory system is 

CT = Set up cost + Production cost + deterioration cost + inventory carrying cost + shortage cost 

    
1

(K)KT D D h H S SC C I C I C I
T

                                                   …(18) 

and putting the value of ID,IH and IS we getting the total average cost of the inventory system. 

 

IV. The Approximation Solution Procedure 
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In many cases   and )(0   are extremely small hence to use Maclaurin series for approximation 
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By using equation (19) the total average cost of system 
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     According to equation (20) contain five variables K,t1, t2, t3 and t4 and these are dependent variable and 

related by equation (11) and (12). Also we have CT > 0, hence the optimum value of t1 ,t4  and K which 

minimize total average cost are the solutions of the equations 
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Provided that satisfy the conditions 
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Now, differentiating (20) with respect to t1, t4 and K we get   
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Here we obtain three simultaneous non-linear equation in t1,t4 and K . Optimal value of t1,t4 and K can be 

find out by using some suitable computational numerical method and the optimum value of t2, t3, Im, Ib and 

minimum total average cost „CT‟ can be obtained from the above  equation. 
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V. Special Cases: 

Case i :  If 0)(0   then the discussed model reduces to production inventory model with out 

deterioration  

Case ii : If 0 , the model reduce to  constant demand. 

 

VI. Conclusion : 
  In the proposed model a production inventory model is formulated for random deteriorating item with a 
increasing market demand rate with time and production rate is variable. Result in this study can provide a 

valuable reference for decision markers in planning the production and controlling the inventory. The model 

proposed here in is resolved by using maclaurin series and cost minimization technique is used to get the 

approximate expression for total   average cost and other parameters & some special cases of model are also 

discussed.A future study will incorporate more realistic assumption in the proposed model. 
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