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Abstract: An elliptic curve E defined over a finite field K, E(K) is the set of solutions to the general Weierstrass 

polynomial E: y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 where the coefficients a1, a2, a3, a4, a6 є K. There exist a 

well defined addition of points on each curve such that the points form an abelian group under the addition 
operation. This group is either cyclic or isomorphic to the product of two cyclic groups.  These set of solutions 

that form the group lie in the closure of the field K over which the curve is defined. If we allow the set to lie only 

in a particular extension of K, the addition operation is well defined there too. Therefore we can associate a 

group to every extension K’ of the field K denoted by E(K’). Will the structure of the group defined over the base 

field K, be affected if the same group is made to lie in the extension K’ of K? 
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I. Introduction 
The points defined on an elliptic curve has been shown to have formed an abelian group which of 

course satisfies all the group axioms. With elliptic curves groups, the operation “+” was found to be compatible 

with its geometry, and hence the group structure. When evaluated to provide evidence for abelian group law, an 

identity element, inverse elements, abelian properties, and associativity were clarified. 
The points on an elliptic curve over an arbitrary field form a group, and by the algebraic formulae the 

group operations eventually amount to computations in the field where the elliptic curve is defined, one has to 

choose a field with an efficiently implementable arithmetic. Basically, this requirement narrows down to the 

finite fields. While the rational numbers and more generally number fields also allow exact computations, they 

have two drawbacks: First, numbers may become arbitrarily big, which destroys the efficiency of the operations. 

Andreas Enge [2]. 

Every point on an elliptic curve is one of two kinds: a point of finite order or a point of infinite order. 

For P to be a point of finite order means there exist a smallest integer n such that nP = 𝜗. If no such n exists then 

P is of infinite order. In other words, P being of infinite order means you can never get the point at infinity by 

adding P to itself, no matter how many times you do it. 
The torsion points, namely those that have finite order, play an important role in 

the study of elliptic curves. all points are torsion points on an elliptic curve over a finite field. Andrija Petronicic 

[3]. 

Darel H. et al (2004), showed that in the applications of elliptic curves to cryptography, one often needs 

to construct elliptic curves with known number of points over a prime field Fq, where n is a prime. An elliptic 

curve over Fq is defined in terms of the solutions to an equation in Fq. The form of the equation defining an 

elliptic curve over Fq differs depending on whether the field is a prime finite field or a field of characteristic 2. 

 

II. Group Order 
Let E be an elliptic curve defined over 𝐹𝑞 . The number of points in E(𝐹𝑞), denoted #E(Fq), is called the 

order of E over 𝐹𝑞 .  

The Weierstrass equation E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6                                   

 has at most two solutions for each x ∈ 𝐹𝑞 , and that #E(𝐹𝑞  ) ∈ [1,2q +1]. Hasse’s theorem which provides tighter 

bounds for #E(𝐹𝑞). 

Theorem 1:  Let E be an elliptic curve defined over 𝐹𝑞 . Then 

q +1−2√q ≤ #E(Fq ) ≤ q +1+2√q. The interval [q +1−2√q, q +1+2√q] is called the Hasse interval.  

If E is defined over 𝐹𝑞 , then #E(Fq )= q + 1−t  where |t|≤ 2√q; t is called the trace of E over 𝐹𝑞 . Since 2√q is 

small relative to q, we have #E(𝐹𝑞  ) ≈ q. The next result determines the possible values for #E(𝐹𝑞  ) as E ranges 

over all elliptic curves defined over 𝐹𝑞  . 

Example 1. (orders of elliptic curves over F37) Let q = 37. Table below lists, for each integer n in the Hasse 

interval [37+1−2√37, 37+1+2√37], the coefficients (a, b) of an elliptic curve E : y2 = x3 +ax +b defined over 𝐹37 

with #E(𝐹37) = n. 
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  n(a, b)     n(a, b)     n(a, b)       n(a, b)     n(a, b) 

26(5, 0)    31(2, 8)    36(1, 0)   41(1, 16)  46(1,11) 

27(0, 9)    32(3, 6)    37(0, 5)   42(1, 9)    47(3, 15) 
28 (0, 6)   33(1, 13)   38(1, 5)   43(2, 9)   48(0, 1) 

29 (1, 12) 34(1, 18)  39(0, 3)    44(1, 7)   49(0, 2) 

30 (2, 2)   35(1, 8)    40(1, 2)    45(2, 14)   50(2, 0) 

The admissible orders n = #E(𝐹37) of elliptic curves E : y2 = x3 + ax + b defined over F37.  Darrel, H. et al. [7] 

If E is an elliptic curve defined over 𝐹𝑞 , then E is also defined over any extension 𝐹𝑞𝑛  of 𝐹𝑞  . The group 𝐸(𝐹𝑞) of 

𝐹𝑞  -rational points is a subgroup of the group 𝐸(𝐹𝑞𝑛 ) of 𝐹𝑞𝑛  -rational points and hence #𝐸(𝐹𝑞) divides #(𝐹𝑞𝑛 ). 

If #E 𝐹𝑞  is known, then # 𝐸(𝐹𝑞𝑛 ) can be efficiently determined by the following result. Darrel, H. et al. [7]  

 

Theorem 2: Let E be an elliptic curve defined over 𝐹𝑝 , and let   #E(Fq ) = q +1−t. Then  #E(𝐹𝑞𝑛  ) = qn + 1 − Vn  

for all n ≥ 2,   where {Vn} is the sequence defined recursively by V0 = 2, V1 = t,   and Vn = V1Vn−1−qVn−2 for n ≥ 

2. 

However, in some cases where the exact order of the group is required, some other methods would have to be 

employed, e.g. The Legendre symbol or the Baby-Step Giant- Step method. Below is an illustration of the 

Legendre symbol  method.  Collins G. S. [6] 

Let E be an elliptic curve defined by y2 = x3 + ax +b over Fq. Then  

 E(𝐹𝑞) = q + 1 +  (
x3+ ax +b

q
)x∈Fq
     Kenneth H. Rosen [14] 

Example 2: Let E be the curve given by y2 =  x3 +  ax + b  over 𝐹7. Then 

 E(Fq) = 7 + 1 +  (
x3 +  6x + 3

7
)

x∈Fq

 

= 7 + 1+ (3/7) + (3/7) + (2/7) + (6/7) + (0/7) + (4/7) + (3/7) 

= 7 + 1 – 1 – 1 + 1 – 1 + 0 + 1 – 1 

= 6 

 

III. Group Structure 
We use Zn to denote a cyclic group of order n. 

Theorem 3: A cyclic group is isomorphic to 𝑍 ∕ nZ for some n ∈ N. In particular any infinite cyclic group 

is isomorphic to (Z, +) and any finite cyclic group of order n is isomorphic to 𝑍 ∕ nZ for some natural number n 
> 0.  ALI W., [1] 

The following theorem describes the group structure of 𝐸(𝐹𝑞). 

Theorem 4: Let E be an elliptic curve defined over Fq. Then 𝐸(𝐹𝑞) is isomorphic to Zn1 ⊕ Zn2 where n1 and n2 

are uniquely determined positive integers such that n2 divides both n1 and q −1.  Darrel, H. et al. [7]. 

Note that #E(Fq ) = n1n2. If n2 = 1, then E(Fq ) is a cyclic group. If n2 > 1, then E(Fq ) is said to have rank 2. If n2 
is a small integer (e.g., n = 2, 3 or 4), we sometimes say that E(Fq ) is almost cyclic. Since n2 divides both n1 and 

q −1, one expects that E(Fq ) is cyclic or almost cyclic for most elliptic curves E over Fq. 

Example 3.The elliptic curve E: y2 = x3+ 4x + 20 defined over F29 has #E(F29) = 37. Since 37 is prime, E(F29) is 

a cyclic group and any point in E(F29) except for ϑ is a generator of E(F29). The following shows that the 

multiples of the point P = (1, 5) generate all the points in E(F29). 

  0P =  ϑ        8P = (8, 10)          16P = (0, 22)       24P = (16, 2)       32P = (6, 17) 

1P = (1, 5)      9P = (14, 23)        17P = (27, 2)      25P = (19, 16)     33P = (15, 2) 

2P = (4, 19)     10P = (13, 23)      18P = (2, 23)       26P = (10, 4)       34P = (20, 26) 

3P = (20, 3)      11P = (10, 25)      19P = (2, 6)         27P = (13, 6)       35P = (4, 10) 

4P = (15, 27)     12P = (19, 13)      20P = (27, 27)    28P = (14, 6)        36P = (1, 24) 
5P = (6, 12)      13P = (16, 27)     21P = (0, 7)         29P = (8, 19) 

6P = (17, 19)     14P = (5, 22)      22P = (3, 28)       30P = (24, 7) 

7P = (24, 22)     15P = (3, 1)        23P = (5, 7)        31P = (17, 10) 

Theorem 5: Let E be an elliptic curve over a field K and let n be a positive integer. If the characteristic of  

K does not divide n , or is 0 (i.e. char. (K) ∤ n or char.(K) = 0 ), then E[n] ≃ Zn ⊕ Zn If the characteristic of  K is 

p > 0 and p|n , write n = prn’ with p ∤ n’ Then E[n] ≃ Zn’ ⊕ Zn’ or Zn ⊕ Zn’ .   

Theorem 6:  Let E: y2 = x3+ ax + b be an elliptic curve defined over K, and let K’ be any field extension of K. 

Then  E(K’) = {(x, y) ∈ K’2 : y2 = x3+ ax + b}   {ϑ} 

Is a subgroup of E. infact, E(K’) ≤ E(K’’), for any extension K’’ of K’.     

We would give detailed group structure of such curves and try to determine if 𝐸(𝐹𝑃𝑛 ) can be completely 

determined by 𝐸(𝐹𝑝) given that the curves are supersingular and with ap = 1  
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Theorem 7:  Let E be an elliptic curve defined over a finite field of q = pn elements. Then #E(Fq) = 1 + q - 

aq; where aq is an integer in the range  -2√q ≤ aq ≤2√q.  Joseph H. S. [12] 

For n =2,  q = p2, #𝐸(𝐹𝑝2 ) can be computed as a function of p and ap without the need to know 𝑎𝑝2 . 

Lemma 1:  Let E be an elliptic curve defined over Fp. Then,                                                                                  

                                           #(𝐹𝑝2 )  = (1 + p + ap)(1 + p - ap).     Joseph H. S. [14] 

The group structure of elliptic curves can be classified based on their order.  

Theorem 8:  Let E be a supersingular curve of order q + 1 − t over Fq where q = pn. Then E lies in one of 

the following classes of curves: 

1. t = 0 and 𝐸(𝐹𝑞) ≅Zq+1. 

2. t = 0 and 𝐸(𝐹𝑞)  ≅Z(q+1)/2⊕ Z2 and q ≡ 3 mod 4. 

3. t2 = q (and n is even). 

4. t2 = 4q (and n is even) 

5. t2 = 2q (and p = 2 and n is odd). 

6. t2 = 3q (and p = 3 and n is odd).   Collins G. S. [6] 

The following lemma gives the group structure of class of curves above. 

Lemma 2:     Let E be an elliptic curve over Fq, where q = pn and let | 𝐸(𝐹𝑞)| = q +1−a. Then; 

1. If t2 = q, 2q, or 3q, then 𝐸(𝐹𝑞) is cyclic.   (Nos 3, 5 and 6 above) 

2. If t2 = 4q, then either 𝐸(𝐹𝑞) ≅ 𝑍√𝑞−1 ⊕ 𝑍√𝑞−1  or (𝐹𝑞) ≅ 𝑍√𝑞+1 ⊕ 𝑍√𝑞+1,  for t = 2√q or t = −2√q 

respectively. 

3. If t = 0 and q ≢ 3 mod 4, then 𝐸(𝐹𝑞) is cyclic. If t = 0 and q ≡3 mod 4, then  either 𝐸 𝐹𝑞  is cyclic, or 

𝐸(𝐹𝑞) ≅ Z(q+1)/2 ⊕Z2.   Collins G. S. [6] 

Theorem 9:  Let E be a supersingular elliptic curve defined over FP. Then 𝐸(𝐹𝑃2) is uniquely determined 

by 𝐸 𝐹𝑝 . 

We would use this theorem to completely determine the group structure of 𝐸(𝐹𝑃2 ) knowing only the order of 

𝐸 𝐹𝑞  for all supersingular curves over Fp.  We will try and compute # 𝐸(𝐹𝑃2 ) as a function of p and ap for any 

q = pn.                                 

If E is an elliptic curve defined over 𝐹𝑞 , then E is also defined over any extension 𝐹𝑞𝑛  of 𝐹𝑞  . The group 𝐸(𝐹𝑞) of 

𝐹𝑞  -rational points is a subgroup of the group 𝐸(𝐹𝑞𝑛 ) of 𝐹𝑞𝑛  -rational points and hence # 𝐸(𝐹𝑞) divides 

# 𝐸(𝐹𝑞𝑛 ). If # 𝐸 𝐹𝑞  is known, then #𝐸(𝐹𝑞𝑛 ) can be efficiently determined by the following result. 

Theorem 10:  Let E be an elliptic curve defined over Fq, and let # 𝐸(𝐹𝑞) = q +1−t. Then # 𝐸(𝐹𝑞𝑛 ) = qn + 1 

− Vn for all n ≥ 2, where {Vn} is the sequence defined recursively by V0 = 2, V1 = t, and Vn = V1Vn−1−qVn−2 for 

n ≥ 2. 

Theorem 11: Let E be an elliptic curve defined over 𝐹𝑝 . Then 𝐸(𝐹𝑃2 ) is uniquely determined by 𝐸(𝐹𝑝).  

Proof. By Theorem 8, we have five cases to consider. Let q = p2. Suppose that ap = 0 so that our curve is of type 

(2). Andrija Peronicic, [3]                                             we will find that aq = (ap)
2 - 2p = -2p = -2√𝑞. Since we are 

considering  q = p2, the power of p is even and the aq term characterizes our group structure to be (Z/(P ± 1))2 by 

lemma 2. 

Suppose that our curve is of type (3) in Theorem 8. This means that ap = ±√𝑞 P and that p ≢1 (mod 3). 

Computing as above, aq = - p = - √𝑞 with q an even power of p. we conclude that 𝐸(𝐹𝑃2 ) is cyclic. 

Suppose that our curve is of type (4) in Theorem 8. Then ap = ∓2√p  and as before we compute aq = 2√q with n 

even. Again, the group structure of 𝐸(𝐹𝑃2 ) is determined to be (Z/(p ±1))2.  

Suppose that our curve is of type (5) in Theorem 8. Then we have ap =∓√2𝑝  and p = 2. Now, aq = 0 and note 

that 2 ≡ 1 (mod4) is satisfied. It follows that the group structure of 𝐸(𝐹𝑃2 ) is given ℤ/2  ⊕  ℤ/ (q+1)/2 or cyclic 

if q ≡ 3 (mod 4). Finally, suppose that our curve is of type (6) in Theorem 8. Hence ap = ±√3𝑝 and aq = √q with 

3 ≢1 (mod 3) and the group structure of 𝐸(𝐹𝑃2 ) is cyclic. Andrija P. [3] 

 

IV. Conclusion 

 It follows that upon a degree two extension of  𝐸 𝐹𝑝 , denoted by 𝐸(𝐹𝑃2) both possible group 

structures defined on the extension field occur; and depends on the group structure defined on the base field 𝐹𝑝 .  

This can be computed by the process described above for both ap = -1 and ap = 1.                                                                     

The approach taken in this research can become substantially more difficult for ap with large absolute value. In 

particular, we can have more primes ` for which the Sylow-`subgroup of E(Fp2) is not uniquely determined and 

it becomes more difficult to find the possible group structure for each ℓ. 
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