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Abstract: The present manuscript deals with the heat transfer and thermal stress analysis of thick annular 

cylinder under steady temperature conditions. A annular cylinder is subjected to arbitrary heat flux applied on 

the upper surface with lower surface is thermally insulated. The fixed circular edges are at zero temperature. 

The integral transform methods are used for heat transfer analysis to determine temperature change. The theory 

of  linearized thermoelasticity based on solution of Naviers equation in terms of Goodiers thermoelastic 

displacement potential, Michell's function, and the Boussinesq's function  for cylindrical co-ordinate system 

have been used for thermal stress anaylsis. The results for temperature change, displacement and stresses have 

been computed numerically and illustrated graphically.  
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I. Introduction 
 Thermoelasticity is based on temperature changes induced by expansion and compression of the test 

part. Although this coupling between mechanical deformation and thermal energy has been known for over a 

century. After world war second, there was very rapid development of thermoelasticity, stimulated by various 

engineering sciences. Thermoelasticity contains the generalized theory of heat conductions, the generalized 

theory of the thermal stresses. A considerable progress in the field of air-craft and machine structures, mainly 

with gas and steam turbines and the emergence of new topics in chemical engineering have given rise to 

numerous problems in which thermal stresses play an important role and frequently even a primary role.  

Singh D.V. [7] solved thermoelastic equations for infinite thick plate with circular hole involving non-

dimensional parameters and obtained results in the form of integral equations. Lee C.W.[3] obtained three 
dimensional series solution for elastic thick plate subjected to general temperature distribution. T. Hata [9] 

concerned with a method for calculating the thermal-stress distribution in a nonhomogeneous thick elastic plate 

under steady distribution of the surface temperature whose shear modulus and coefficient of thermal expansion 

are assumed to be functions of z. Lee Z.Y. et al [4] studied transient response of one dimensional axisymmetric 

quasi-static coupled thermoelastic problem of multilayered hollow cylinder with orthotropic material properties. 

Recently Kulkarni et al [1 and 2] determined the temperature changes and thermal stresses due to conduction of 

heat in the various shaped thick plate under transient and steady-state temperature conditions. 

 

II. Heat Transfar Analysis 
2.1  Formulation of the Problem 

Consider a thick annular cylinder of  thickness 2h occupying space D defined by a  r  b, -h  z  h.  

The arbitrary heat )(rf is applied on the upper surface of cylinder (z = h) , lower surface (z = -h) is thermally 

insulated. The fixed circular edges ( r = a and r = b) are at zero temperature. Under these prescribed conditions, 

the temperature changes hence thermal stresses developed within annular cylinder are required to be determined.  

The steady state temperature of the cylinder satisfies the heat conduction equation, 
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with the boundary conditions   

                                   T =0                at r = a   hzh                   (2.1.2) 

                                                 T =0                at r = b   hzh                                    (2.1.3) 
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2.2  The Solution for Temperature Change  

The integral transform techniques is used to find the solution of above heat conduction problem 

alongwith prescribed boundary conditions.  

Introduce the finite Hankal transform over the variable r and its inverse transform defined as in [6]  
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where the kernel of Hankel transform is given by  
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The normality constant can be obtained by the orthogonality property of eigen functions as, 
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and 1, 2 … are roots of the transcendental equation  
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Jn(x) is Bessel function of the first kind of order n and Yn(x) is Bessel function of the second kind of order n. 

On applying the finite Hankal transform defind in the equation (2.2.1) to the equation (2.1.1),one obtain 
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where T  is the Hankal transform of T. 

On solving equation (2.2.7) under condition given in equations (2.1.4) and (2.1.5), one obtain  
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On applying inverse Hankal transform defined in equation (2.2.2),one obtain the expression for temperature as 
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where )( nf  is Hankal transform of )(rf .  

Since initial temperature iT =0, the temperature change                                              (2.2.9) 

 

III. Thermal Stress Analysis 
3.1 Development of Thermoelastic Equations 

Following Noda et al [4], The Naviers equations for axisymmetric thermoelastic problems can be expressed as  
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             e         -  dilatation 

             E        -  Young‟s modulus 

                    -  coefficient of linear thermal expansion 

              -  Poisson ratio 

       

The solution of Naviers equations (3.1.1) and (3.1.2) without body forces can be expressed by Goodiers 

thermoelastic displacement potential   and Boussinesq harmonic functions   and   under the axisymmetric 

conditions. 

The Goodiers thermoelastic displacement potential   must satisfy the governing equations 
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where  K is Restraient coefficient as        
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where       -    thermoelastic constant 

             &  -  Lames elastic constants. 

Boussinesq harmonic functions   and   must satisfy the governing equations 
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when deformation in the cylindrical coordinate system are discussed, Michells function M  instead of 

Boussinesq harmonic functions   and   is often used.  

 

Taking   

                       dzzM                                                                                          (3.1.7) 

The Michell‟s function M  must satisfy 

                    022  M                                                                                                       (3.1.8) 

The component of the displacement and stresses are represented by the thermoelastic displacement potential   

and Michell‟s function M  as 
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For traction free surface the stress functions

                             zz = rz = 0    at hz                                                             (3.1.15) 

The set of equations (3.1.1) to (3.1.15) constitute mathematical formulation for displacement and thermal 

stresses developed within solid due to temperature change. 

 

3.2 The Solution for Displacement and Thermal Stresses 

Assuming displacement function  (r, z)  as 

  
   




 














 










1 0

0

0

0

)2cosh(

)(sinh

)(

)(

)(

)(
),(

n n

n

n

n

n

n

n
h

hzhz

bY

rY

bJ

rJ
Dzr












       (3.2.1)            

Using equation in (3.1.4), one  have 
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Now suitable form of Michell‟s function M  satisfying (3.1.8) is given by 
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where Bn  and  Cn  are arbitrary functions. 

Using equations (2.2.8), (2.2.9), (3.2.2) and (3.2.3) in the equations (3.1.9) and (3.3.14), one obtains the 

expressions for displacement and thermal stress function as 
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 where . represents differentiation w.r.t. to space variable r.  
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Now in order to satisfy above equation (3.1.15), solving equations (3.2.8) and (3.2.9) for nB and nC  one 

obtain,                      
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Using these values of nB  and nC  from above equations (3.2.10) and (3.2.11) in equations (3.2.4), to (3.2.9) 

one obtain the expressions for displacements and  stresses as    
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                                                    0zz                 (3.2.16) 

        and                                                         

                                                                0rz                         (3.2.17) 
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IV. Numerical Calculations 
4.1 Special Case 

Setting    2222)( brarrf                           (4.1.1) 

Applying finite Hankal transform as defined in equations (2.2.1) to (2.2.6), one obtain 
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 (4.1.2) 

 

4.2 Dimensions 

The inner radius of annular cylinder a=1m 

The outer radius of annular cylinder b=2m 

The height of annular cylinder 2h=0.6m 

 

4.3 Material Properties 

The numerical calculation have been carried out for steel (SN 50C) plate  
Thermal  diffusivity  k = 15.9 x 10-6 (m2s-1) and   

Poisson  ratio 281.0  

 

4.4 Roots of transcendental equation 

The roots of transdental equation 0
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 are given by  

1 = 3.120, 2 = 6.2734, 3 = 9.4182,  4= 12.5614, 5 = 15.7040. 

For convenience setting .
2

,
N

GK
B

N

K
A   in the expressions (3.2.8) to (3.2.17).The numerical 

expressions for temperature, displacement and stress components are obtained by equations (2.2.8) and (3.2.8) 

to (3.2.17).  

                                
   Figure1:  The radial displacement function ur/A in radial direction.  
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           Figure2:   The radial displacement function ur/A in axial direction. 
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              Figure3:  The axial displacement function uz /A in radial direction.  
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                          Figure 4 : The axial displacement function uz /A  in axial direction.  

             
     Figure 5 : The radial stress function rr/B in radial direction.  

                                      
           Figure 6 : The radial stress function rr/B   in axial direction.       
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         Figure 7 : The stress function /B  in radial direction.  
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Figure 8 : The stress function /B  in axial direction.  

  

V. Concluding Remarks 

In this paper a thick annular cylinder is considered and determined the expressions for temperature, 

displacement and stress function due to steady state temperature field. As  a special case mathematical model is 
constructed for                                                                  

   2222)( brarrf           

and performed numerical calculations. The thermoelastic behaviour is examined such as temperature, 

displacement and stresses with the help of arbitrary heat applied on the upper surface. 

From figure 1 and 2, radial displacement function ur is decreases from inner circular surface to outer circular 

surface and it is increases from lower surface to upper surface. 

From figure 3 and 4, axial displacement function uz decreases from lower surface to upper surface. Also it 

shows variation at r = 1.5. 

From figure 5 and 6, stress function rr develops compressive stress within annular region 5.11  r  and 

tensile stress within annular region 25.1  r . 

 From figure 7 and 8, the stress function  develops tensile stress in radial and axial direction except at outer 
edge of cylinder,it develops compressive tensile stress at the outer edge i.e.r = 2. 

Due to applying the arbitrary heat supply on the upper surface on the cylinder, the radial and axial displacements 

occurs near the heat source and cylinder expands towards the center. The axial stress component and resultant 

stress component  are zero due to exchange of heat through heat transfer in circular boundry. The results 

presented here will be more useful in engineering problem particularly in the determination of the state of strain 

in thick circular plate constituting foundations of containers for hot gases or liquids, in the foundations for 

furnaces etc. Also any particular case of special interest can be derived by assigning suitable values to the 

parameters and function in the expression (3.2.8) - (3.2.17). 
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