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Abstract: This paper studied the 2–point improved block backward differentiation formula for solving stiff 

initial value problems proposed by Musa et al (2013) and further established the necessary conditions for the 

convergence of the method. It is shown that the method is both zero stable and consistent. The order of the 

method is also derived. 
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I. INTRODUCTION 
Consider a system of stiff initial value problem (IVP) of the form: 

 

' ( , )y f x y  0( )y x    1 2, , , m      (1) 

 

Such problems are encountered in the modelling of equations related to electrical circuits, vibrations, kinetics, 

chemical reactions etc. The definition of stiff problems has not been precise due to the fact that stiffness occurs 

in several applications of different nature. According to a definition in [9], no universally accepted definition of 
stiffness exists. Brugnano et al [10] compiled various definitions of stiffness according to the applications of 

different nature in which they occur. The most common phenomena that describes stiffness is when the 

eigenvalues of the jacobian of the system (1) differ greatly in magnitude. 

Considerable effort in dealing with stiffness has led to the development of many implicit numerical 

methods e.g. [14], [17], [16], [13], [8], [12], [2]. One of the most popular methods is the Backward 

Differentiation Formula (BDF) [1]. The development of the BDF has led to various methods, including ones that 

produced sequence of approximations simultaneously (block methods) [3], [18], [15], [11]. Examples of block 

methods based on the BDF include the block backward differentiation formula (BBDF) developed in [20], block 

extended backward differentiation formula (BEBDF) developed in [4], improved block backward differentiation 

formula (IBBDF) developed in [5]. Convergence of block methods for solving (1) has been studied in [19], [4]. 

The IBBDF method proves to be efficient and one of the recent block method for stiff problems. This paper 

therefore studied the IBBDF and investigates its convergence properties and order. 
 

The 2–point IBBDF is derived by modifying the special case of the following 2–point BBDF 
3

, 1 ,

0

j i n j k i n k

j

y h f   



   1,2k i      (2) 

A parameter  =½ and a non-zero coefficient 1, 0k i    (where 1, ,k i k i   ) are introduced in (2) to come 

up with the following IBBDF method: 

 
3

, 1 , 1
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j i n j k i n k n k
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y h f f      



  ,  1,2.k i    (3) 

 

By choosing  = ½, the following 2-point block formula is obtained: 

1 2 1

2 1 1 1 2

5 1 1

4 4 2

1 1 11 1

8 2 8 2 2

n n n n n

n n n n n n

y y y h f f

h
y y y y f f

  
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    (12) 

Details on the derivations, stability and performance of the method can be found in [5]. 
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In the remaining part of the paper, we derive the order of the method and show the convergence of the method. 

 

II. ORDER OF THE METHOD 
To derive the order of the method, define the formulae (4) in general matrix form as: 

1 1
* *

1 1

0 0

j m j j m j

j j

C Y h D F   

 

        (5) 

where 
* * * *

0 1 0 1 1 1, , , , , ,m m mC C D D Y Y F 
 and 

mF  are defined by 
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Equation (5) can be written as 
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  (6) 

Let 
* * *

0 1 0, ,C C D and 
*

1D be block matrices defined by 
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Definition 1 

The order of the block method (5) and its associated linear operator given by 

 

     
3

0 0

( ); '
k k

j j

j j

L y x h C y x jh h D y x jh


 

 
      

 
     (7) 

 

is a unique integer p such that 0,qE  0(1)q p  and 1 0pE   ; where the qE  are constant (column) 

matrices defined by: 
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2,3,4.q   

 

For q=0(1)4 
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Therefore, the formula (4) is of order 3, with error constant 
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III. CONVERGENCE OF THE METHOD 
Convergence is an essential property that every acceptable linear multistep method (LMM) must 

possess. This section shows the convergence of the method (4). According to [6], consistency and zero stability 

are the necessary conditions for the convergence of any numerical method. Lambert [7] also explained that 

consistency controls the magnitude of the local truncation error while zero stability controls the manner in 

which the error is propagated at each step of the calculation. A method which is not both consistent and zero 
stable is rejected outright and has no practical interest. We begin by showing that the method (4) is consistent. 

We start by presenting the following definitions and theorems related to the convergence of LMM. 

 

Definition 2 (LMM) 

A general linear multistep method (LMM) has the form: 

0 0

k k

j n j j n j

j j

y h f  

 

        (10) 

 

where j and j are constants and 0k  .  0 and 0  cannot both be zero at the same time. For any k step 

method, k  is normalised to 1. 

The method (10) is said to be explicit if 0k   and implicit if 0k  . 

 

Definition 3 

The first and the second characteristic polynomial of the LMM (10) are defined by: 
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respectively. 

 

Definition 4 
 

The linear difference operator L associated with the LMM (10) is defined by 

 
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( ); ( ) '( )
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
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where ( )y x  is an arbitrary test function and it is continuously differentiable on [ , ]a b .  

Expanding ( )y x jh  and '( )y x jh  as Taylor series about x, and collecting common terms yields 
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Definition 5 (Consistency) 

The LMM (10) is said to be consistent if its order 1p   

It also follows from (14) that the LMM (10) is consistent if and only if 

0
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It also follows from (15) that the LMM (10) is consistent if and only if 

(1) 0

'(1) (1)


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Definition 6 

The characteristic polynomial of the method (10) is defined as 

 

( , ) ( ) ( ) 0r h h               (17) 

 

Where h h  and 
f

y





 . 

Definition 7 (Zero Stability) 

The LMM (10) is said to be zero stable if no root of the first characteristic polynomial ( )  (defined by (11)) 

has modulus greater than one, and that every root with modulus one is simple. 
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Theorem 1 (Convergence of LMM) 

Henrici [6] gave the following theorems on convergence of LMM 

 
(1) A necessary condition for convergence of the LMM (10) is that the modulus of no root of the associated 

polynomial ( )  (given in (11)) exceeds 1, and that the roots of modulus 1 be simple.  

The condition thus imposed on ( )  is called the condition of zero stability.  

(2) A necessary condition for convergence of the LMM defined by (10) is that the order of the associated 

difference operator be at least 1.  

 

The condition that the order 1p   is called the condition of consistency.  

 

3.1 Consistency of the method  

In this subsection, it is shown that the 2–point  IBBDF satisfies the consistency conditions given in definition 5. 

 

From what followed in section 2, it can be concluded that the order of the 2–point IBBDF method is greater than 

1. 

It now remains to show that the method is consistent. 
 

The method (4) is consistent if and only if the following conditions are satisfied: 
3
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where the 'j sC and 'j sD are as previously defined. 

 

Equation (18) then becomes 
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Hence the first condition in (18) is satisfied. 
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Hence 

3 3

0 0

j j
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jC D
 
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Thus, the second condition in (18) is also satisfied. 

 

The consistency conditions are therefore met. Hence, the method is consistent. It now remains to show that the 

method is zero stable. 

 

3.2  Zero Stability 

The stability polynomial of the method (4) is given by:  

2 22 2 25 1 19 3 1 43 23 1
( , ) 0

32 16 16 2 8 32 16 2
R h t h t ht h t t ht h t             (22) 

To derive the first characteristic polynomial, we set 0h   in (22) to obtain: 

25 19 43
0

32 16 32
t t            (23) 

 

Solving (23) for t, we obtain the following roots: 

1,t   0.116279t    

Thus according to definition 7, the method (4) is zero stable. 

 
Since the method (4) is both consistent and zero stable, it is thus convergent in accordance with Theorem 1. 

 

IV. Conclusion 
The 2–point improved block backward differentiation formula is studied in this paper. The order of the 

method is shown to be 3. The convergence of the method is also shown by proving that the method satisfied 

consistency conditions and that it is zero stable; thus validating its significance in solving stiff initial value 

problems. 
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