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Abstract: The present paper deals with the determination of displacement and thermal stresses in a thick 

annular disc with internal heat generation. Arbitrary heat 𝑓 𝑟  is applied on the upper surface of disc whereas 

lower surface dissipates heat by convection and the fixed circular edge are thermally insulated. Here we 

compute the effects of internal heat generation of a thick annular disc in terms of stresses along radial direction. 

The governing heat conduction equation has been solved by the method of integral transform technique. The 

results are obtained in a series form in terms of Bessel’s functions. The results for temperature change, 

displacement and stresses have been computed numerically and illustrated graphically.                       
Keywords   Thermal stresses, internal heat generation, annular disc, steady state. 
 

I. Introduction 
 Deshmukh [1] studied transient heat conduction problem in a thin hollow cylinder and determined 

thermal stresses. Gogulwar and Deshmukh [2]  studied the inverse problem of thermal stresses in a thin annular 

disc. Kulkarni  and Deshmukh [3] has determined the quasi-static steady state thermal stresses in thick annular 

disc.  Shang sheng Wu [6] studied the direct thermoelastic  problem in an annular  fin with its base subjected to 

a heat flux of a decayed exponential function of time. In this paper thick annular disc is considered and 

discussed its thermoelasticity with the help of the Goodier’s thermoelastic displacement potential function and 

the Michell’s function. To obtain the temperature distribution integral transform  method is applied. The results 

are obtained in series form in terms of Bessel’s functions and the temperature change, displacement function and 
stresses have been computed numerically and illustrated graphically. Here we compute the effects of internal 

heat generation in terms of stresses along radial direction. A mathematical model has been constructed of a thick 

annular disc with the help of numerical illustration by considering copper (pure) disc. No one previously studied 

such type of problem. This is new contribution to the field.  

   The direct problem is very important in view of its relevance to various industrial mechanics subjected to 

heating such as the main shaft of lathe, turbines and the role of rolling mill, base of furnace of boiler of a 

thermal power plant, gas power plant and the measurement of aerodynamic heating. 

     

II. Formulation of the Problem 
    Consider a thick annular disc of thickness 2h defined by  𝑎 ≤ 𝑟 ≤ 𝑏, −𝑕 ≤ 𝑧 ≤ 𝑕.  An arbitrary heat 

𝑓(𝑟) is applied on the upper surface of the disc  ( z = h )  and  heat dissipates by convection from the lower 

boundary surface ( z = -h) into the surrounding at the zero temperature. The circular edge (𝑟 = 𝑎 and  𝑟 = 𝑏 ) 

are thermally insulated. Assume that the boundary of the annular disc is free from traction. Under these 

prescribed conditions, the quasi-static steady state thermal stresses are required to be determined. 

The differential equation governing the displacement potential function 𝜙 𝑟, 𝑧  is given in [4] as  

        
𝜕2𝜙

𝜕𝑟2 +
1

𝑟
 
𝜕𝜙

𝜕𝑟
+

𝜕2𝜙

𝜕𝑧2 =  𝐾𝜏                                      (1) 

 where K is the restraint coefficient and temperature change 𝜏 = 𝑇 −  𝑇𝑖 ,  𝑇𝑖    is initial (ambient) temperature. 

Displacement function 𝜙 is known as Goodier’s thermoelastic displacement potential. 

The steady state temperature of the plate satisfies the heat conduction equation, 

       
𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 + 
𝑞

𝑘
=  0                            (2) 

  with the boundary conditions          

        
𝜕𝑇

𝜕𝑟
= 0            𝑎𝑡   𝑟 = 𝑎,    − 𝑕 ≤ 𝑧 ≤ 𝑕              (3)               

        
𝜕𝑇

𝜕𝑟
= 0           𝑎𝑡  𝑟 = 𝑏,      − 𝑕 ≤ 𝑧 ≤ 𝑕                        (4) 

        
𝜕𝑇

𝜕𝑧
+  𝑕𝑠1

𝑇 = 𝑓 𝑟        𝑎𝑡 𝑧 = 𝑕, 𝑎 ≤ 𝑟 ≤ 𝑏            (5)

    

         
𝜕𝑇

𝜕𝑧
−  𝑕𝑠2

𝑇 = 0      𝑎𝑡 𝑧 = −𝑕, 𝑎 ≤ 𝑟 ≤ 𝑏                                                                            (6)  
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where k is the thermal conductivity of the material of the disc, q is internal heat generation, 𝑕𝑠1
 and  𝑕𝑠2

 are the 

relative heat transfer coefficients on the upper and lower surface of the thick annular disc.      

The Michell’s function M must satisfy 

       ∇2∇2𝑀 = 0                             (7)  
where 

        ∇2=  
𝜕2

𝜕𝑟2 +
1

𝑟
 
𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2                           (8) 

The components of the stresses are represented by the thermoelastic displacement potential 𝜙 and Michell’s 

function M as 

       𝜎𝑟𝑟 = 2𝐺  
𝜕2𝜙

𝜕𝑟2 −  𝐾𝜏 +  
𝜕

𝜕𝑧
 𝑣∇2𝑀 −  

𝜕2𝑀

𝜕𝑟2
               (9) 

       𝜎𝜃𝜃 = 2𝐺  
1

𝑟
 
𝜕𝜙

𝜕𝑟
−  𝐾𝜏 +  

𝜕

𝜕𝑧
 𝑣∇2𝑀 −

1

𝑟
 
𝜕𝑀

𝜕𝑟
                                     (10) 

        𝜎𝑧𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑧2 −  𝐾𝜏 + 
𝜕

𝜕𝑧
 (2 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2
                                                        (11) 

 and 

       𝜎𝑟𝑧 = 2𝐺  
𝜕2𝜙

𝜕𝑟𝜕𝑧
+  

𝜕

𝜕𝑟
 (1 − 𝑣)∇2𝑀 −  

𝜕2𝑀

𝜕𝑧2
                 (12) 

where G and v are the shear modulus and Poisson’s ratio respectively. 

The boundary conditions on the traction free surface of an annular disc are 

       𝜎𝑟𝑟 = 𝜎𝑟𝑧 = 0 at 𝑟 = 𝑎 and 𝑧 = ±𝑕            (13) 

III. Solution 
3.1 Temperature change 

   To obtain the expression for temperature T ( r, z ), we introduce the finite Hankel transform 

over the variable r and its inverse transform defined as in [5]  

         𝑇  𝛽𝑚 , 𝑧 =   𝑟′ 𝐾0 𝛽𝑚 , 𝑟′  
𝑏

𝑟′=𝑎
 𝑇(𝑟′, 𝑧) 𝑑𝑟′                              (14) 

 𝑇(𝑟, 𝑧)  =   𝐾0 𝛽𝑚 , 𝑟 ∞
𝑚=1  𝑇  𝛽𝑚 , 𝑧                        (15) 

where 𝐾0 𝛽𝑚 , 𝑟 =  
𝑅0 𝛽𝑚 ,𝑟 

 𝑁
,                        (16)            

             𝑅0 𝛽𝑚 , 𝑟 =    
𝐽0 (𝛽𝑚 𝑟)

𝛽𝑚 𝐽0 ′(𝛽𝑚 𝑏)
−

𝑌0 (𝛽𝑚 𝑟)

𝛽𝑚𝑌0 ′(𝛽𝑚 𝑏)
        (17) 

The normality constant 

          𝑁 =  
𝑏2

2
 𝑅0 𝛽𝑚 , 𝑏 2 −  

𝑎2

2
 𝑅0 𝛽𝑚 , 𝑎 2          (18) 

and  𝛽1 , 𝛽2 … ..   are roots of the transcendental equation 

      
𝐽1(𝛽𝑚 𝑎)

𝐽1(𝛽𝑚 𝑏)
−

𝑌1(𝛽𝑚 𝑎)

𝑌1 (𝛽𝑚 𝑏)
= 0                                                                                                      (19) 

where  𝐽𝑛  𝑥  is Bessel function of the first kind of order n and 𝑌𝑛  𝑥  is Bessel function of the second kind of 

order n. 

 

On applying the finite Hankel transform defined in the Eq. (14) and its inverse transform defined in (15) to the 

Eq. (2), one obtains the expression for temperature as   

  𝑇 𝑟, 𝑧 =   
1

 𝑁
  

𝐽0(𝛽𝑚 𝑟)

𝛽𝑚 𝐽0 ′(𝛽𝑚 𝑏)
−

𝑌0(𝛽𝑚 𝑟)

𝛽𝑚𝑌0 ′(𝛽𝑚 𝑏)
   −

1

 𝛽𝑚
2+𝑕𝑠1𝑕𝑠2  sinh  2𝛽𝑚 h +𝛽𝑚 (𝑕𝑠1 +𝑕𝑠2 ) cosh  2𝛽𝑚 h 

 ∞
𝑚=1  

                 ×  
 

dA  𝛽𝑚 ,h 

dZ
+ 𝑕𝑠1

A 𝛽𝑚 , h − F 𝛽𝑚    𝛽𝑚 cosh[𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2
sinh[ 𝛽𝑚 (𝑧 + h)] 

+  
dA (𝛽𝑚 ,−h)

dZ
− 𝑕𝑠2

A 𝛽𝑚 , −h   −𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
sinh[𝛽𝑚 (𝑧 − h)] 

  

                 + A 𝛽𝑚 , 𝑧                           (20) 

𝐴 𝛽𝑚 , 𝑧   is particular integral of differential equation (2) and F 𝛽𝑚   is the Hankel transform of f(r). 

𝐹 𝛽𝑚  =    
𝑟′

 𝑁
  

𝐽0 (𝛽𝑚 𝑟′ )

𝛽𝑚 𝐽0 ′(𝛽𝑚 𝑏)
−

𝑌0 (𝛽𝑚 𝑟′ )

𝛽𝑚𝑌0 ′(𝛽𝑚 𝑏)
  

𝑏

𝑟′=𝑎
 𝑓(𝑟′ ) 𝑑𝑟′          (21)

            
 Michells function M  

Now suitable form of M which satisfy Eq. (7) is given by  

  𝑀 = 𝐾  
𝐹 𝛽𝑚  

 𝑁
∞
𝑚=1   

𝐽0 𝛽𝑚 𝑟 

𝛽𝑚 𝐽0 ′ 𝛽𝑚 𝑏 
−

𝑌0 𝛽𝑚 𝑟 

𝛽𝑚𝑌0 ′ 𝛽𝑚 𝑏 
       

          ×   𝐵𝑚  
𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 + h)]

 +𝑕𝑠2
sinh[𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  

  

          + 𝐶𝑚  𝛽𝑚 (𝑧 + h)  
–𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[ 𝛽𝑚 (𝑧 − h)]

+ cosh 2𝛽𝑚 h  𝛽𝑚 e𝛽𝑚  𝑧+h  + 𝑕𝑠1
sinh 2𝛽𝑚 h  e𝛽𝑚  𝑧+h 

           (22) 

 where  𝐵𝑚  𝑎𝑛𝑑 𝐶𝑚  are arbitrary functions. 
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3.2 Goodiers thermoelastic displacement potential 𝜙 
Assuming the displacement function 𝜙 𝑟, 𝑧  which satisfies Eq. (1) as 

𝜙 𝑟, 𝑧 =  
𝐾

 𝑁  𝛽𝑚
2+𝑕𝑠1𝑕𝑠2  sinh  2𝛽𝑚 h +𝛽𝑚 (𝑕𝑠1 +𝑕𝑠2 ) cosh  2𝛽𝑚 h  

   
𝐽0 𝛽𝑚 𝑟 

𝛽𝑚 𝐽0 ′ 𝛽𝑚 𝑏 
−

𝑌0 𝛽𝑚 𝑟 

𝛽𝑚𝑌0 ′ 𝛽𝑚 𝑏 
    ∞

𝑚=1           

    ×     − 
dA  𝛽𝑚 ,h 

dZ
+ 𝑕𝑠1

A 𝛽𝑚 , h − F 𝛽𝑚     

                ×  
𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

sinh[𝛽𝑚 (𝑧 + h)]

−𝛽𝑚 e𝛽𝑚  𝑧+h 
 −  

dA  𝛽𝑚 ,−h 

dZ
− 𝑕𝑠2

A 𝛽𝑚 , −h   

                ×  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h                (23)    

          

   Now using Eqs. (20), (22) and (23) in Eq. (9), (10), (11) & (12), one obtains the expressions for stresses 

respectively as 

We set for convenience 

    𝑔1 𝑟 =
𝐽1 ′  𝛽𝑚 𝑟 

𝛽𝑚 𝐽0 ′ 𝛽𝑚 𝑏 
−

𝑌1 ′ 𝛽𝑚 𝑟 

𝛽𝑚𝑌0 ′ 𝛽𝑚 𝑏 
 ,      

    𝑔2 𝑟 =  
𝐽0 𝛽𝑚 𝑟 

𝛽𝑚 𝐽0 ′ 𝛽𝑚 𝑏 
−

𝑌0 𝛽𝑚 𝑟 

𝛽𝑚𝑌0 ′ 𝛽𝑚 𝑏 
 , 

    𝑔3 𝑟 =  
𝐽0 ′ 𝛽𝑚 𝑟 

𝛽𝑚 𝐽0 ′ 𝛽𝑚 𝑏 
−

𝑌0 ′ 𝛽𝑚 𝑟 

𝛽𝑚𝑌0 ′ 𝛽𝑚 𝑏 
 ,                          

     𝑈 =    𝛽𝑚
2 + 𝑕𝑠1

𝑕𝑠2
 sinh 2𝛽𝑚 h + 𝛽𝑚 (𝑕𝑠1

+ 𝑕𝑠2
) cosh 2𝛽𝑚 h   , 

     𝑁 =
dA  𝛽𝑚 ,h 

dZ
+ 𝑕𝑠1

A 𝛽𝑚 , h − F 𝛽𝑚  , 

     L = 
dA  𝛽𝑚 ,−h 

dZ
− 𝑕𝑠2

A 𝛽𝑚 , −h , 

     𝑢1 =   𝐽0 𝛽𝑚𝑎 𝑌0 ′ 𝛽𝑚𝑏 − 𝑌0 ′ 𝛽𝑚𝑎 𝐽0 ′ 𝛽𝑚𝑏  ,            

      𝑣1 =  𝐽1′ 𝛽𝑚𝑎 𝑌0 ′ 𝛽𝑚𝑏 − 𝑌1 ′ 𝛽𝑚𝑎 𝐽0 ′ 𝛽𝑚𝑏  . 
 

   
𝜎𝑟𝑟

𝐾
 = 2𝐺     

𝑔1 𝑟 

𝑈   𝑁 
    𝑁 𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

sinh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  ∞
𝑚=1  

          +𝐿  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h   

    + 𝑈 F 𝛽𝑚  

 
 
 
 
 
 

𝐵𝑚  𝛽𝑚 sinh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2
cosh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  

+ 𝐶𝑚  𝛽𝑚  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

+ 𝐶𝑚  𝛽𝑚
2(𝑧 + h)  

−𝛽𝑚 sinh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
cosh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

 
 
 
 
 
 

     

      +
𝑔2 𝑟 

𝑈  𝑁 
   𝑁 𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

sinh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h    

      +𝐿 −𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
sinh[𝛽𝑚 (𝑧 − h)]  + A(𝛽𝑚 , 𝑧)  

      +2𝑣 𝑈 𝐶𝑚  𝛽𝑚
3F 𝛽𝑚   

−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h              (24) 

 
𝜎𝜃𝜃

𝐾
 = 2𝐺     

𝑔3 𝑟 

𝑟𝑈   𝑁 
   − 𝑁 𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

sinh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  ∞
𝑚=1  

            −𝐿  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h   

       − 𝑈 F 𝛽𝑚  

 
 
 
 
 
 

𝐵𝑚  𝛽𝑚 sinh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2
cosh[𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  

+ 𝐶𝑚  𝛽𝑚  
−𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

+ 𝐶𝑚  𝛽𝑚
2(𝑧 + h)  

−𝛽𝑚 sinh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
cosh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

 
 
 
 
 
 

     

         +
𝑔2 𝑟 

𝑈   𝑁 
   𝑁 𝛽𝑚 cosh[𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

sinh[ 𝛽𝑚 (𝑧 + h)]   

         +𝐿 −𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
𝑠𝑖𝑛h[𝛽𝑚 (𝑧 − h)] + A(𝛽𝑚 , 𝑧)  

         +2𝑣 𝑈 𝐶𝑚  𝛽𝑚
3F 𝛽𝑚   

−𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
sinh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h               (25) 
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𝜎𝑧𝑧

𝐾
 = 2𝐺     

𝑔2 𝑟 

𝑈   𝑁 
   − 𝑁𝛽𝑚

2 𝛽𝑚 𝑐𝑜𝑠𝑕[𝛽𝑚 (𝑧 + 𝑕)] + 𝑕𝑠2
𝑠𝑖𝑛𝑕[𝛽𝑚 (𝑧 + 𝑕)] − 𝛽𝑚𝑒𝛽𝑚  𝑧+𝑕  ∞

𝑚=1  

           −𝐿𝛽𝑚
2  

−𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
𝑠𝑖𝑛𝑕[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
𝑠𝑖𝑛𝑕 2𝛽𝑚𝑕 𝑒𝛽𝑚  𝑧+𝑕   

         + 𝑁  𝛽𝑚 𝑐𝑜𝑠𝑕[ 𝛽𝑚 (𝑧 + 𝑕)] + 𝑕𝑠2
𝑠𝑖𝑛𝑕[ 𝛽𝑚 (𝑧 + 𝑕)]  

          +𝐿 −𝛽𝑚 𝑐𝑜𝑠𝑕[𝛽𝑚 (𝑧 − 𝑕)] + 𝑕𝑠1
𝑠𝑖𝑛𝑕[𝛽𝑚 (𝑧 − 𝑕)] + A(𝛽𝑚 , 𝑧) 

        + 𝑈F 𝛽𝑚  

 
 
 
 
 
  1 − 𝑣 2 𝐶𝑚  𝛽𝑚

3  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

−𝐵𝑚  𝛽𝑚
3   𝛽𝑚 sinh[ 𝛽𝑚 (𝑧 + h)] + 𝑕𝑠2

cosh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  

+ 𝐶𝑚  𝛽𝑚
4(𝑧 + h)  

−𝛽𝑚 sinh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
cosh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

 
 
 
 
 
 

      

            (26) 

 
𝜎𝑟𝑧

𝐾
 = 2𝐺     

𝑔3 𝑟 

𝑈   𝑁 
   − 𝑁𝛽𝑚  𝛽𝑚 sinh[ 𝛽𝑚 (𝑧 + h)] + 𝑕 𝑠2

cosh[ 𝛽𝑚 (𝑧 + h)] − 𝛽𝑚 e𝛽𝑚  𝑧+h  ∞
𝑚=1      

           −𝛽𝑚𝐿  
−𝛽𝑚 sinh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

cosh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h   

           + 𝑈𝛽𝑚
2  F 𝛽𝑚  

 
 
 
 
 
 
 
 −2𝑣 𝐶𝑚  

–𝛽𝑚 sinh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1
cosh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h 

 

− 𝐶𝑚   𝑧 + h  
−𝛽𝑚 cosh[ 𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[ 𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

−𝐵𝑚  
−𝛽𝑚 cosh[𝛽𝑚 (𝑧 − h)] + 𝑕𝑠1

sinh[𝛽𝑚 (𝑧 − h)]

+𝛽𝑚 cosh 2𝛽𝑚 h e𝛽𝑚  𝑧+h + 𝑕𝑠1
sinh 2𝛽𝑚 h e𝛽𝑚  𝑧+h  

 
 
 
 
 
 
 
 

     

            (27) 

In order to satisfy condition (13), solving equations (24) and (27) for 𝐵𝑚   and 𝐶𝑚   one obtains  

 𝐵𝑚 =
𝑢1

𝑈F 𝛽𝑚   𝛽𝑚−𝑕𝑠2 𝑣1
 

          ×  𝑁𝛽𝑚 + 𝐿 −𝛽𝑚 cosh 2𝛽𝑚 h − 𝑕𝑠1
sinh 2𝛽𝑚 h + A(𝛽𝑚 , −h)              (28) 

 𝐶𝑚   =
1

2𝑣𝛽𝑚  𝑈  F 𝛽𝑚  
 

𝑁 𝑕𝑠2−𝛽𝑚  

 𝑕𝑠1 + 𝛽𝑚   cosh  2𝛽𝑚 h +sinh  2𝛽𝑚 h  
+ 𝐿       (29) 

 

IV. Special case and Numerical calculations 
Setting 

(1) 𝑓 𝑟 = 𝛿 𝑟 − 𝑟0 ,  𝑟0  = 1.5.            (30) 

           where 𝛿 𝑟  is well known dirac delta function of argument r.  

  Applying  finite Hankel transform as defined in eq.(14) to the eq.(30), one obtains 

         𝐹  𝛽𝑚  =
𝑟0

 𝛽𝑚
 
𝐽0 𝛽𝑚  𝑟0   

𝐽0
′ ′ 𝛽𝑚 𝑏 

−
𝑌0 𝛽𝑚  𝑟0   

𝑌0
′  ′ 𝛽𝑚 𝑏 

         

 (2) 𝑞 𝑟, 𝑧 =  𝛿 𝑟 − 𝑟0 𝛿 𝑧 − 𝑧0  , 𝑧0  = 0.         (31)     

     𝑞    𝛽𝑚 , 𝑧 =
𝑟0

 𝛽𝑚
𝛿 𝑧 − 𝑧0  

𝐽0 𝛽𝑚  𝑟0   

𝐽0
′  ′ 𝛽𝑚 𝑏 

−
𝑌0 𝛽𝑚  𝑟0   

𝑌0
′  ′ 𝛽𝑚 𝑏 

     

    𝑎 = 1𝑚, 𝑏 = 2𝑚, 𝑕 = 0.25𝑚,  𝑕𝑠1
= 13 𝑎𝑛𝑑 𝑕𝑠2

= 17. 
  Material Properties 

 

The numerical calculation has been carried out for a copper (pure) circular disc  with the material properties 
defined as, 

 

        Thermal diffusivity 𝛼 = 112.34× 10−6  𝑚2𝑠−1 ,  
        Specific heat 𝑐𝜌 = 383𝐽/𝐾𝑔,    

        Thermal conductivity k = 386 W/m K, 

         Shear modulus 𝐺 = 48 𝐺 𝑝𝑎,   
         Poisson ratio 𝜗 = 0.3.   
 

Roots of Transcendental Equation  
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The 𝛽1 = 3.1965,  𝛽2 = 6.3123, 𝛽3 = 9.445,  𝛽4 = 12.5812,  𝛽5 = 15.7199 are the roots of transcendental 

equation  
𝐽1 (𝛽𝑚 𝑎)

𝐽1(𝛽𝑚 𝑏)
−

𝑌1(𝛽𝑚 𝑎)

𝑌1(𝛽𝑚 𝑏)
= 0 . The numerical calculation and the graph has been carried out with the help of 

mathematical software Matlab.  

 

V. Discussion 
  In this paper a thick annular disc is considered which is free from traction and determined the 

expressions for temperature, displacement and stresses due to internal heat generation within it and we compute 

the effects of internal heat generation in terms of stresses along radial direction. As a special case mathematical 

model is constructed for considering copper (pure) disc with the material properties specified above. 

         

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Radial stress function 
σrr

K
(𝑞 = 0).                                  Fig. 2 Radial stress function 

σrr

K
(𝑞 ≠ 0). 

 

Fig. 3 Angular stress function 
σθθ

K
 𝑞 = 0 .                            Fig. 4 Angular stress function 

σθθ

K
 𝑞 ≠ 0 . 

        

 

 



Some study of Thermoelastic Steady State behavior of Thick annular disc with Internal Heat 

www.iosrjournals.org                                                             52 | Page 

Fig. 5 Axial stress function 
σzz

K
 𝑞 = 0 .                                 Fig. 6 Axial stress function 

σzz

K
 𝑞 ≠ 0 .  

 

 

       
Fig. 7 Stress function 

σrz

K
 𝑞 = 0 .                                           Fig. 8   Stress function 

σrz

K
  𝑞 ≠ 0 . 

 
From figure 1 and 2, it is observed that the radial stress function 

σrr

K
 increases in radial direction due to internal 

heat generation in thick annular disc.  

From figure 3 and 4, it is observed that the angular stress function 
σθθ

K
 increases slightly in radial direction due to 

internal heat generation in thick annular disc.  

From figure 5 and 6, it is observed that the axial stress function 
σzz

K
 behave normally in radial direction due to 

internal heat generation in thick annular disc.  

From figure 7 and 8, it is observed that the stress function 
σrz

K
  behave normally in radial direction due to internal 

heat generation in thick annular disc.  

 

VI.  Conclusion 
  We can summarize that due to internal heat generation in thick annular disc the radial stress and the 

angular stress function are increases in radial direction whereas the axial stress function and the stress function 

behave normally.  

The results obtained here are useful in engineering problems particularly in the determination of state 

of stress in a thick annular disc and base of furnace of boiler of a thermal power plant and gas power plant and 
the measurement of aerodynamic heating. 
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