
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728,p-ISSN: 2319-765X,  Volume 7, Issue 6 (Sep. - Oct. 2013), PP 29-32 
www.iosrjournals.org 

www.iosrjournals.org                                                             29 | Page 

 

Efficient Calculation of Sensitivity Measures for Haldane Model 

Equations 
 

G.S.C. Okpokwasili
1
,  E.N. Ekaka-a

1
, C.O. Nweke

2
 

1Department of Microbiology, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria 
1Department of Computer Science and Mathematics, Rivers State University of Science and Technology, Port 

Harcourt, Nigeria, 
2Department of Microbiology, Federal University of Technology, Owerri, Nigeria 

 

Abstract: The application of kinetic modelling of toxicity, adsorption and biodegradation of phenolic 

compounds is an active area of research which uses the tool of mathematical modelling to understand the 

complex interaction of substrate depletion and biomass production. However, it is imperative to test the 

sensitivity of the model parameters which define these key processes of applied microbiology in order to find out 

which of these parameters will have either a biggest or smallest cumulative effect on the model output or 

solution trajectory. Since sensitivity analysis is an integral part of model development and is capable of 

providing useful insights for a further validation research in applied biodegradation of phenolic compounds, it 

is a challenging collaborative scientific investigation to attempt to find which model parameters of this 

microbiological system would require additional research for the purpose of strengthening the continuity of 
knowledge base thereby reducing output uncertainty.  

In this numerical study, we have used the technique of sensitivity measures or sensitivity analysis to 

select the maximum specific growth rate, the experimental time and the starting substrate value as the relatively 

sensitive parameters while other model parameters can be classified as relatively least sensitive.  We will expect 

these contributions to guide further research in the validation of Monod models of substrate depletion and 

biomass production. 
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I. Introduction 
It is a well-established fact that toxicity, adsorption and biodegradation of phenolic compounds 

depends on the complex process of mathematical modelling which forms the basis of Okpokwasili and Nweke 

model formulation [2005] being an extension of Monod’s model. However, the sensitivity measures of the 
parameters which define the dynamics of this interaction were yet to be empirically determined. The sensitivity 

of one model parameter over another model parameter is an integral part of model development which can be 

used to guide further research and strengthen knowledge-base in this challenging interdisciplinary theme of the 

kinetic modelling of toxicity, adsorption and biodegradation of phenolic compounds. It is against this 

background that we intend for the first time to determine the sensitivity measures of a Monod’s model with the 

expectation of providing some insights which we have not seen elsewhere on an aspect of the kinetic modelling 

of toxicity, adsorption and biodegradation of phenolic compounds. 

 

II. Materials and Methods 
According to Nweke (2010), the observations which were made on phenol inhibition of growth of 

culture and biodegradation can be modelled using pioneering substrate inhibition models which have already 

been developed and tested experimentally by Okpokwasili and Nweke, 2005. On the basis of this formulation, 

the Haldane model 1 is defined by the following first order ordinary differential equation which describes 

substrate depletion dS/dt = -μmS(YS0-YS + X0)/(Ks +S)(1+S/Ki)Y 

on the assumption that the starting substrate concentration is defined as a positive constant S(0) while the 

parameters μm, Y, S0, X0 and Ks are positive constants. Here, the dependent variable S stands for the substrate 

concentration, the parameter μm stands for the maximum specific growth rate, Ks stands for the substrate 

saturation constant, that is, substrate concentration at half μmax and Y is called the true growth yield [mass of 

biomass (X) synthesized per unit of substrate (S) utilized or removed]. The Haldane model 2 is similarly defined 

by the equation 

 
dS/dt = -μm S(YS0-YS + X0)/(Ks +S+S2/Ki)Y 

 

In this study, we propose to use the method of sensitivity measures or sensitivity analysis to find which 

parameters when varied a little one-at-a-time will produce either the biggest cumulative effect or smallest 
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cumulative effect on the model output or solution trajectory. This numerical idea of tackling important open 

scientific problems in parameter estimation and model validation has already been defined clearly and applied in 

the recent published research reports of Ekaka-a and Nafo [2012a, 2012b] which complements other scientific 
problems of different patterns of formulation and sophistication [Gardner et al., 1980; O’ Neill et al., 1980; 

Downing et al., 1985; Breshears, 1987; Crick et al., 1987; Yu et al., 1991; Ekaka-a, 2009]. 

When a chosen model parameter is varied a little while other parameters are fixed, we have used the 

three popular mathematical norms which measure the error between the data points of original substrate 

depletion model and the simulated substrate depletion model due to a variation of a model parameter to calculate 

the cumulative percentage effect on the model output under a fixed length of experimental time in a maximum 

of 10 hours.   

` How do we calculate the sensitivity measures for each model parameter? The Haldane model 1 has six 

parameters namely μm, Y, Ks, S0, X0, and Ki. To illustrate this proposed numerical technique, consider the 

parameter μm. The chosen precise value of μm is 0.01. First, we vary this parameter by 10% and measure its 

cumulative percentage effect on the solution trajectory or model output. The solution trajectory when this 
parameter is not varied and the solution trajectory when the same parameter is varied behave differently. It is 

expected that the difference of these two solution trajectories over time will incur some numerical error. This 

error can be quantified by using the three popular mathematical norms of 1-norm, 2-norm, and infinity norm. 

The numerical values of these norms are calculated by dividing the norm of the difference of the solution 

trajectories when the parameter is varied by the norm of the difference of the solution trajectories when the 

parameter is not varied. The output of this calculation is quantified in terms of percentage. We observe that in 

one instance, the 1-norm value of the solution trajectories may be bigger than the 2-norm value of the same 

solution trajectories while the 2-norm value of the same solution trajectories is bigger than the infinity norm of 

the solution trajectories. We follow the same procedure to calculate the sensitivity measures of parameter μm due 

to other variations such as 12%, 14%, 16%, and 18%. In this scenario and other scenarios which we have 

reported below, we observe that the values of the mathematical norms all decrease from the 10% parameter 

value variation to 18% parameter value variation. Because of the challenge and limitation of the analytical 
calculation in terms of computational time and the degree of correctness of the sensitivity values, we have 

adopted to utilize the ODE 45 [Ordinary Differential Equations of Order 4-5 due to Runge-Kutta Scheme] 

sensitivity technique in this present analysis. We opted to implement only the ODE 45 sensitivity technique over 

the ODE 23 [Ordinary Differential Equations of Order 2-3 due to Runge-Kutta Scheme] sensitivity technique 

because these two numerical techniques provide similar cumulative percentage effects on the solution 

trajectories. The numerical ODE 45 sensitivity technique is preferred in this context because it is 

computationally efficient than the ODE 23 technique. The results which we have obtained using this powerful 

numerical technique of sensitivity analysis are reported and discussed in the next section of this paper. 

 

III. Results for Haldane Model 1 
In this section, we will presentthe results which we have obtained on applying sensitivity analysis to 

the individual parameters of the substrate depletion Haldane model 1 formulation. 

 
Each Type of Mathematical 

Norms 

Variations of μm = 0.01 

0.001 0.0012 0.0014 0.0016 0.0018 

1-norm 327.93 265.40 220.66 187.33 161.30 

2-norm 146.46 130.80 118.41 108.18 99.64 

Infinity-norm 88.74 86.40 84.01 81.58 79.12 

Table 1: Sensitivity Measures of Parameter μm 

 

What do we learn from Table 1? When the parameter μmis varied by 10 percent, its new value is 0.001. When 

parameter μm takes a precise value of 0.001, this change produces 327.93 cumulative percentage change on the 

model output or solution trajectories using a 1-norm sensitvity method. Similarly, for this 10 percentage 

variation of parameter μm, the 2-norm and infinity-norm sensitivity methods will produce 146.46 and 88.74 

cumulative percentage changes on the solution trajectories. On the other hand, when the same model parameter 

is varied by 18 percent, the three sensitvity values of 1-norm, 2-norm and infinity-norm are 161.30, 99.64, and 

79.12 cumulative percentage changes. On the basis of this systematic analysis, the model parameter μmax can be 
classified as a most sensitively parameter. Comparable numerical analyses have been conducted for other model 

parameters which we have displayed our contributions in Table 2, Table 3, Table 4, Table 5, and Table 6. 

Within these percentage variations of μm, we observe that the sensitivity values unanimously decrease from a 

high value of sensitivity to a relatively high value of sensitivity irrespective of the mathematical norms which 

were utilized to calculate the sensitivity values. The weighted mean which corresponds to the 1-norm, 2-norm, 

and infinity norm sensitivity values can be statistically determined because each new value of the parameter μm 
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has specific proportion in terms of the calculated 1-norm, 2-norm, and infinity norm. We decided to omit this 

calculation because it is not the focus of our research. 

In the subsequent analyses, we have followed the same method of calculating the ODE 45 sensitivity values 
when the model parameters Y, Ks, S0, X0, and Ki are varied from 10%, 12%, 14%, 16% to 18%. The 

corresponding sensitivity results which we have obtained due to these variations are also clearly presented and 

displayed in the Tables below. 

 
Each Type of Mathematical 

Norms 

Variations of Y = 0.001 

0.0001 0.00012 0.00014 0.00016 0.00018 

1-norm 0.4492 0.4389 0.4424 0.4650 0.4441 

2-norm 0.0239 0.0235 0.0237 0.0246 0.0236 

Infinity-norm 0.0035 0.0029 0.0033 0.0033 0.0030 

Table2:  Sensitivity Measures of Parameter Y 

 
Each Type of Mathematical 

Norms 

Variations of Ks = 0.01 

0.001 0.0012 0.0014 0.0016 0.0018 

1-norm 0.4177 0.4039 0.3867 0.3835 0.4078 

2-norm 0.0228 0.0218 0.0206 0.0207 0.0217 

Infinity-norm 0.0032 0.0031 0.0030 0.0028 0.0027 

Table3:  Sensitivity Measures of Ks 

 
Each Type of 

Mathematical Norms 

Variations of S0 = 0.5 

0.05 0.06 0.07 0.08 0.09 

1-norm 0.4266 0.4439 0.4491 0.4416 0.4356 

2-norm 0.0236 0.0240 0.0240 0.0241 0.0234 

Infinity-norm 0.0035 0.0032 0.0037 0.0036 0.0036 

Table4:  Sensitivity Measures of S0 

 
Each Type of 

Mathematical Norms 

Variations of parameter X0 = 0.03 

0.003 0.0036 0.0042 0.0048 0.0054 

1-norm 283.17 234.30 198.25 169.97 148.42 

2-norm 135.53 122.38 111.64 102.70 94.92 

Infinity-norm 87.21 84.86 82.50 80.07 77.61 

Table 5:  Sensitivity Measures of Parameter X0 

 
Each Type of Mathematical 

Norms 

Variations of parameter Ki = 0.02 

0.0020 0.0024 0.0028 0.0032 0.0036 

1-norm 211.30 171.59 139.17 118.54 105.30 

2-norm 118.64 105.82 94.70 86.90 79.43 

Infinity-norm 85.05 84.86 78.78 75.57 72.30 

Table 6:  Sensitivity Measures of Parameter Ki 

 

IV. Results for Haldane Model 2 
The sensitivity results which we have obtained with respect to the Haldane model 2 will be presented in this 

section. 
Each Type of Mathematical 

Norms 

Variations of μm = 0.01 

0.001 0.0012 0.0014 0.0016 0.0018 

1-norm 278.95 224.54 185.70 157.06 134.13 

2-norm 134.87 120.00 108.17 98.46 90.11 

Infinity-norm 87.28 84.58 81.84 79.04 76.17 

Table 7:  Sensitivity Measures of Parameter μm 

 
Each Type of Mathematical 

Norms 

Variations of Y = 0.01 

0.0001 0.00012 0.00014 0.00016 0.00018 

1-norm 0.47 0.4637 0.4546 0.4355 0.4539 

2-norm 0.025 0.0247 0.0245 0.0234 0.0240 

Infinity-norm 0.0034 0.0033 0.0038 0.0033 0.0032 

Table 8:  Sensitivity Measures of Parameter Y 

 
Each Type of Mathematical 

Norms 

Variations of Ks = 0.01 

0.001 0.0012 0.0014 0.0016 0.0018 

1-norm 0.4207 0.4176 0.4066 0.4078 0.4210 

2-norm 0.0225 0.0224 0.0217 0.0218 0.0227 

Infinity-norm 0.0027 0.0033 0.0030 0.0032 0.0031 

Table 9:  Sensitivity Measures of Parameter Ks 
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Each Type of Mathematical 

Norms 

Variations of S0 = 0.5 

0.05 0.06 0.07 0.08 0.09 

1-norm 0.4669 0.4695 0.4690 0.4626 0.4648 

2-norm 0.0251 0.0248 0.0249 0.0250 0.0251 

Infinity-norm 0.0036 0.0031 0.0036 0.0034 0.0035 

Table 10:  Sensitivity Measures of Parameter S0 

 
Each Type of Mathematical 

Norms 

Variations of X0 = 0.03 

0.003 0.0036 0.0042 0.0048 0.0054 

1-norm 240.01 197.68 166.16 142.18 122.10 

2-norm 124.50 111.95 101.80 93.05 85.75 

Infinity-norm 85.51 82.83 80.08 77.28 74.41 

Table 11:  Sensitivity Measures of Parameter X0 

 
Each Type of Mathematical 

Norms 

Variations of parameter Ki = 0.02 

0.0020 0.0024 0.0028 0.0032 0.0036 

1-norm 164.77 127.40 110.50 88.81 67.23 

2-norm 104.15 92.38 82.64 72.80 66.27 

Infinity-norm 82.21 78.40 74.47 70.42 66.27 

Table 12:  Sensitivity Measures of Parameter Ki 

 

V. Discussion of Results 
It is very clear from these systematic sensitivity calculations of the parameters which define the 

Haldane model 1 and Haldane model 2 that all these parameters are not equally sensitive. Irrespective of the 

type of Haldane model, the sensitivity behaviour of the model parameters is differentiated into two distinct 

groups. The most sensitivity group concerns the model parameters μm, X0, and Ki while the least sensitivity 

group concerns the model parameters Y, Ks, and S0.  

 

VI. Conclusion 
By using the numerical technique of sensitivity analysis, we have found that the model parameters μmax 

and the experimental time have greater influence on the model outputs. The next sensitive parameter is the 

substrate starting value. These three parameters which define the dynamics of the Monod’s model need to be 

efficiently estimated in order to provide reliable model predictions and minimise model output uncertainty. On 

the other hand, the least sensitive model parameters δ0, X0, Ks, y  which also contribute to the development of 

the Monod’s model need to be taken cautiously as rough estimates in contrast to the principle of parsimony. We 

would expect this present contribution to provide useful insights in the field of kinetic modelling of toxicity, 

adsorption and biodegradation of phenolic compounds. A further sensitivity ranking of the parameters of 

Monod’s model which is different from its sensitivity analysis is yet to be attempted. We propose to look into 

this level of sophisticated analysis in our next study. 
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