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Abstract:  By Andreev's theorem and Choi's theorem, we proved that the degree of each vertex is 

three and the number of vertices of orderable compact Coxeter polyhedral is at most 10. Therefore a 
combinatorial polyhedron is a 3-connected planner graph. From the Plantri program, we found that 

the number of 3-connected planner graphs with at most 10 vertices of degree 3 is 9. We find that only 

five planner graphs among these 9 graphs satisfy the properties of orderable compact Coxeter 
polyhedra. Then we verify the polyhedra which are associated with these 5 planner graphs are 

orderable. Therefore the number of combinatorial polyhedra of orderable and deformable compact 

hyperbolic Coxeter polyhedra is five up to symmetry. 

 

I. Introduction 

A n-dimensional orbifold is a topological space with a structure based on the quotient space 

of
nR by a finite group action. An orbifold is called good if its universal cover is a manifold. We will 

concentrate only on good orbifolds. 

To give a hyperbolic structure on an orbifold, we model it locally by the orbit spaces of finite 

subgroups of   1,PO n  acting on open subsets of  Hn
 . Similarly, to put a real projective structure 

on an orbifold, we model it locally by the orbit spaces of finite subgroups of   1,PGL n R  acting 

on open subsets of  
nRP  . 

 A real projective structure on an orbifold M implies that M has a universal cover M and the deck 

transformation group  1 M   acting on M  so that 
 1

M

M


  is homeomorphic to M. 

A convex set in 
nRP   is a convex set in an affine patch. If we use Klein's model of a n-dimensional 

hyperbolic space, then is an open ball in 
nRP  and  1,PO n   is a subgroup of  1,PGL n   

preserving
nH . Therefore 

nH  can be imbedded in an  1n -dimensional real vector space V as an 

upper part of hyperboloid 
2 2 2

1 2 1... 1nx x x      
 

Hence hyperbolic orbifolds naturally have real projective structures. But a real projective structure of 

an orbifold may not have hyperbolic structure. 

 
We will concentrate on 3-dimensional compact hyperbolic orbifolds whose base spaces are 

homeomorphic to a convex polyhedron and whose sides are silvered and each edge is given an order. 

If the dihedral angle of an edge of a compact hyperbolic polyhedron is 
n


  then we say that the order 

of the edge is n  where n  is a positive number. 

 

Definition 1.0.1. Let X   be 
3S , 

3E  , or 
3H . Let Isom(X) denotes the group of isometries of X. A 

Coxeter polyhedron is a convex polytope in X whose dihedral angles are all integer sub-multiples of 

  . Let P be a 3-dimensional Coxeter polyhedron and    be the group generated by the reflections in 
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the faces of P. Then   is a discrete group of Isom(X) and P is its fundamental polyhedron. 
Conversely, every discrete group   of Isom(X) can be obtained from a Coxeter polyhedron P such 

that P is its fundamental polyhedron. The number of faces intersect at vertex is called the degree of 

that vertex. Also the edge order of edges of a Coxeter polyhedron are positive integers. 

 
Definition 1.0.2. Let P be a fixed convex polyhedron. Let us assign orders at each edge. Let e be the 

number of edges and 2e   be the numbers of order-two. Let  f  be number of sides. 

We remove any vertex of P which has more than three edges ending or with orders of the edges 

ending there is not of the form 

  
       2,2, , 2, 2,3,3 , 2,3,4 , 2,3,5 ,n n 

 
i.e., orders of spherical triangular groups. This make P into an open 3-dimensional orbifold. 

Let  P̂  denote the differential orbifold with sides silvered and the edge orders realized as assigned 

from P with vertices removed. We say that  P̂  has a Coxeter orbifold structure. 
 

Definition 1.0.3. The deformation space  P̂  of projective structures on an orbifold P̂   is the space of 

all projective structures on  P̂  quotient by isotopy group actions of P̂  . 

 

Definition 1.0.4.  We say P is orderable if we can order the sides of P so that each sides meets sides 
meets sides of higher index in less than or equal to 3  edges. 

Example 1.0.5. Cube and dodecahedron are not satisfying orderability condition. 

 

Definition 1.0.6. Let P̂   be the orbifold structure of a 3-dimensional polyhedron P. We say that the 

orbifold structure  P̂  is orderable if the sides of P can be ordered so that each side has no more than 

three edges which are either of order 2 or included in a side of higher index. P̂  is trivalent if each side 
F has three or less number of edges of order two or edges belonging to sides of higher class than F. 

 

Definition 1.0.7. A combinatorial polyhedron is a 3-ball whose boundary sphere 
2S  is equipped with 

a cell complex whose 0-cells, 1-cells and 2-cells will also be called vertices, edges and faces 

respectively, and which can be realized as a convex polyhedron. Topologically, a compact polyhedron 
P is a combinatorial polyhedron. A polyhedron is called trivalent if degree of each vertex is 3. 

Remark 1.0.8. For our convenient, we will use notation in short as: 

(1) A compact hyperbolic Coxeter polyhedron is as CH-Coxeter polyhedron. 
(2) An orderable and projectively deformable compact hyperbolic Coxeter orbifold is as ODCH-

Coxeter orbifold. 

 

Theorem 1.0.9. Let P be a 3-dimensional CH-Coxeter polyhedron and P̂  be its Coxeter orbifold 

structure. Suppose that P̂  is orderable and projectively deformable. Then the total number of 

combinatorial polyhedral of such P is 5 and P is one of the combinatorial polyhedral in figure 1.  
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Proof. Using Andreev’s theorem and Choi’s theorem, we proved that such combinatorial polyhedron 
has vertices not more than 10. It is proved that the degree of each vertex of ODCH Coxeter 

polyhedron is 3. Each polyhedron is associated with a planner graph. Using Plantri graph, we find the 

3-connected graphs having not more than 10 vertices and the number of such graph is 9. Among these 

9 graphs, only five graphs satisfy the properties of ODCH Coxeter orbifold structure. Finally we find 
that each polyhedron associated with these five graphs has ODCH Coxeter orbifold structure. 

Therefore the number of combinatorial polyhedron is five. 

 
Acknowledgments. I like to thank Dr. Ashish Kumar Upadhyay, IIT, Panta for his helpful comment 

to run Plantri program. 

    

II. Preliminary 

2.1. Andreev’s Theorem. In 1970, E.M. Andreev provides a complete characterization of 3-

dimensional compact hyperbolic polyhedral having non-obtuse dihedral angles on his article [2]. 

Therefore Andreev’s theorem is a fundamental tool for classification of 3 dimensional compact 
hyperbolic Coxeter polyhedron. Some elementary faces about polyhedral are essential before we state 

Andreev’s theorem. 
 

Definition 2.1.1. A cell complex on 
2S  is called trivalent if each vertex is the intersection of three 

faces. A 3-dimensional combinatorial polyhedron is a cell complex C on 
2S  that satisfied the 

following condition: 

(1) Every edges of C is the intersection of exactly two faces. 

(2) Anon-empty intersection of two faces is either an edge or a vertex. 
(3) Every faces contains not fewer than 3 edges. If a face contains n edges then n is called the length 

of the face. 

Suppose C* be the dual complex of C in 
2S . Then C* is a simplicial complex which embed in the 

same 
2S  so that the vertex correspond to face of C, etc. A simple closed curve    in C* is called k-

circuit if it is formed by k edges of C*. A k-circuit   is called prismatic k-circuit if the intersection of 

any two edges of C intersected by    is empty. If a prismatic k-circuit meets the edges 1 2, ,..., ke e e   of 

C successively then we say that the edges 1 2, ,..., kF F F  are an k-prismatic element of C. 

 
Theorem 2.1.2 (Andreev, 1970), Let C be an combinatorial polyhedron such that C is not a simplex 

and suppose that non-obtuse angles 0
2

ij


   are given corresponding to each edge  

ij i jF F F   of C where iF  and jF  are the faces of C. Then there exist a compact hyperbolic 
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polyhedron P in 3-dimensional hyperbolic space which realize C with dihedral angles   
ij  at the 

edge   
ijF  if and only if the following five conditions hold: 

(1) C is trivalent. 

(2) If  
ijk i j kF F F F    is a vertex of C then 

ij jk ki     
. 

(3) If    is a prismatic 3-circuit which intersects edges , ,ij jk kiF F F  of  C then 

ij jk ki     
 

(4) If    is a prismatic 4-circuit which intersects edges  , , ,ij jk ki liF F F F  of  C then 

2ij jk kl li       
. 

(5) If sF  is a four sides faces of C with edges  , , ,is js ks lsF F F F  enumerated successively, then 

3

3

is ks ij jk kl li

js ls ij jk kl li

      

      

     

     
 

    
Furthermore, this polyhedron is unique up to hyperbolic isometries. Also Roeder, Hubbard and 
Dunbar proved that if C is not a triangular prism, then condition (5) is a consequence of (3) and (4) 

(Sec [14]). Andreev’s restriction to non-obtuse dihedral angles is necessary to ensure that P be 

convex. Without this restriction of dihedral angles, compact hyperbolic polyhedral realizing a given 
abstract polyhedron may not be convex. Since dihedral angles of Coxeter polyhedron is non-obtuse, 

Andreev’s theorem provide a complete characterization of 3-dimensional hyperbolic Coxeter 

polyhedron having more than four faces. 

 
2.2. Choi’s Theorem. Prof. Choi concentrated a class of Coxeter orbifolds which is called orderable 

Coxeter orbifolds and a certain type of orbifolds known as normal type orbifolds. In this class of 

orbifolds, we understand the restricted deformation space of orbifolds in real projective space from his 
article [6]. 

 

Definitation 2.2.1. We denote k(P) the dimension of the projective group acting on a convex 
polyhedron P.   

 

 

3 if  is a tetrahedron,

1 if  is a cone with base
( )

   a convex polygon which is no

0 otherwise

P

P
k P





 

  

Definition 2.2.2. A Coxeter group   is an abstract group define by a group presentation of form 

  ,; , ,
ijn

i i jR R R i j I
. 

Where I is a countable index set, ijn N  is symmetric for ,i j  and 1ijn    . 

The fundamental group of the orbifold will be a Coxeter group with a presentation 

 , 1,2,... , 1
ijn

i i jR i f R R 
 

 where  iR  is associated with silvered sides and ,i jR  has order  ,i jn  associated with the edge formed 

by the i-th and  j-th side meeting. 

 

A Coxeter orbifold whose polytope has a side F and a vertex v where all other sides are adjacent 
triangles to F and contains v and all edge orders of F are 2 is called a cone-type Coxeter orbifold. A 
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Coxeter orbifold whose polyhedron is topologically a polygon times an interval and edges orders of 

top and bottom sides are 2 is called a product-type Coxeter orbifold. If P̂   is not above type and has 

not finite fundamental group, then P̂   is said to be a normal-type Coxeter orbifold. 
 

Theorem 2.2.3 (Choi, 2006). Let P be a convex polyhedron and P̂  be given a normal type Coxeter 

orbifold structure. Let k(P) be the dimension of the group of projective automorphisms acting on P. 

Suppose that P̂  is orderable. Then the restricted deformation space of projective structures on the 

orbifold P̂  is a smooth manifold of dimension  23 f e e k P     if it is not empty.  

 

Corollary 2.2.4. Let P be a convex polyhedron and  P̂  be given a normal type Coxeter orbifold 

structure. If  23 0f e e     and P̂  is orderable, then the restricted deformation space is empty. 

 

Remark 2.2.5. Let P be a convex polyhedron and  P̂  be given a normal type Coxeter orbifold 
structure. Let k(P) be the dimension of the group of projective automorphisms acting on P. Suppose 

that P̂  is orderable. Then P̂  is projectively deformable if and only if  23 0f e e k P    . 

 

2.3. Planar Graphs. The study of graphs is very important to understand the combinatorial structure 

of a polyhedron. We will discuss about the basis relation between graph theory and the 3-dimensional 
convex polyhedron. 

 

Definition 2.3.1. A planar graph is a graph that can be drawn on the sphere( or the plane) without 
edge crossings. Two edges of a graph are parallel if they have the same endpoints. A loop is an edge 

whose endpoints are the same vertex. If there are neither parallel edges nor loops, a graph is called 

simple. A simple graph is called k-connected if the removal of any k-1 or fewer vertices (all the edges 
they are incident with) leaves a connected graph. The dual graph of a plane graph is a plane graph 

obtained from the original graph by exchanging the vertices and faces. The dual graph of a graph is k-

connected if and only if the graph is k-connected. If all the faces of planar graph is triangles then the 

graph is called triangulation. The dual of a triangulation is a trivalent planar graph. A triangulation 

with n vertices has exactly  3 6n  edges and  2 4n  faces. 

 

Definition 2.3.2. Let   1 1 1,G V E  and  2 2 2,G V E   be two graphs imbedded on the sphere such 

that  1 2,V V  be the set of vertices of 1 2,G G   and  1 2,E E  be the sets of edges of 1 2,G G  . An 

isomorphism from 1G  to 2G  is a pair of bijections 1 2:V V   and 1 2: E E   which preserve the 

vertex-edge incidence relationship. 

 
Definition 2.3.3. Let P be a convex polyhedron. The vertices and the edges of P from an abstract, 

finite, simple graph, called the graph of P and denoted by G(P). Thus, G(P) is an abstract graph 

defined on the set of vertices vert (P) of P. Two vertices u and v in vert (P) are adjacent in G(P) if and 
only if [u,v]  is an edge of P. 

 

Definition 2.3.4. A 3-dimensional polyhedron is called simplicial polyhedron if every face contain 
exactly 3 vertices. A 3-dimensional polyhedron is called a simple polyhedron if each vertex is the 

intersection of exactly 3 faces. 

 

Theorem 2.3.5 (Blind and Mani). If P is convex polyhedron, then the graph G(P) determines the 
entire combinatorial structure of P. 

In other words, if two simple polyhedral have isomorphic graphs, then their combinatorial polyhedral 

are isomorphic as well. 
        



Application of Plantri Graph: All Combinatorial Structure of Orderable And Deformable Compact 

www.iosrjournals.org                                                        6 | Page 

Steinitz established the following basic theory for 3-dimensional polyhedron. 
 

Theorem 2.3.6 (Steinitz). G(P) is the graph of a 3-dimensional polyhedron P if and only if it is 

simple, planar and 3-connected. 

 
Corollary 2.3.7. Every 3-connected planar graph has a representation in the plane such that all 

edges are straight, and all the bounded regions determined by it, as well as the union of all the 

bounded regions, are convex polygons. 
   

Since the compact hyperbolic polyhedron is simple, the combinatorial polyhedron of a compact 

hyperbolic polyhedron can be known from 3-connected planar graph of the polyhedron. 
 

2.4. Plantri Program. The program plantri is one of the fastest C program which generates certain 

type of graphs that are imbedded on the sphere or the plane. Exactly one graph of each isomorphism 

class is output. A 3-dimensional convex polyhedron can be represented by a 3-connected simple 
planar graph. Plantri program generates the list of 3-connected simple planar graphs of finite number 

of vertices and hence generates the list of 3-dimensional polyhedrons of finite number of vertices up 

to isomorphism  (See[11]) . 
 Ascii code is a human readable version of planar code. The vertices of the graph are named as Ascii 

characters starting with 'a'. Each line of output represents a graph. 

 
Example 2.4.1. The output format of a graph is 

                       10 bcd, aef, agd, ach, bif, beg, cfj, dji, ehj, gih 

 

 
 

This is a graph with 10 vertices a, b, c, d, e, f, g, h, i, j. The neighboring vertices of 'a' in clockwise 

order are b, c, d; and so on. Starting neighboring vertex of a vertex in output format is the lowest ascii 

characher. For example: 'b' is the lowest ascii character among the neighbors of 'a' and hence 
neighbors of 'a' is started from 'b' in clockwide direction, etc. 

 

III. Results 
3.1. Known Results from previous article. In my previous article [The graphical investigation of 

orderable and deformable compact Coxeter polyhedral in hyperbolic space], we found the following 

theorems and propositions: 

           Let P be a CH-Coxeter polyhedron and  P̂  be its Coxeter orbifold structure of P. 

 

Proposition 3.1.1. If   P̂  is orderable, then P is also orderable. 

 

Remark 3.1.2. If P is not orderable, then  P̂  is also not orderable. 

Proposition 3.1.3. Let P be an orderable CH-Coxeter polyhedron. Assume that 1 2 3, , ,...F F F  be the 

face order of the faces of P. Then the number of edges in the face iF   , i.e., the length of  iF  can’t 

more than 2i  . 
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Corollary 3.1.4. If P is a 3-dimensional orderable polyhedron then P has at least one triangular face. 

 

Corollary 3.1.5. Let P be orderable 3-dimensional polyhedron. Suppose P has exactly one face of 

length  i . Then P has at least one face of length 1i  . 

 

Let  e  be the number of edges of P and 
2e   be the number of edges of edge order 2. Let  v  be the 

number of vertices of P and  f   be the number of faces of P. 

Proposition 3.1.6. Let P be a 3-dimensional compact hyperbolic Coxeter polyhedron and  P̂  be 

Coxeter orbifold structure of P. Suppose P̂  is orderable and projectively deformable. Then 
a. Every vertex is incident with exactly three edges. 
b. Every vertex is incident with at least one edge of edge order 2. 

c. 
2 5 10

2

v
e v    . 

d. v is even. 

 

Proposition 3.1.7. Let P̂  be Coxeter orbifold structure of P. Assume that P̂  is ODCH-Coxeter 

polyhedron. If 10v   , then edge orders of the three edges at each vertex is one of the following form 

   
     2,3,3 , 2,3,4 , 2,3,5 ,

 

i.e, no of the form   2,2, , 2n n   . 

Proposition 3.1.8. Let P be a 3-dimensional CH-Coxeter polyhedron and P̂  be Coxeter orbifold 

structure of P. Suppose that P is not a tetrahedron. If P̂  is orderable and projectively deformable, 
then P has not more one triangular face. 

 

Proposition 3.1.9. Let P be a CH-Coxeter polyhedron and P̂  be its Coxeter orbifold structure of P. 

Suppose that P is not a tetrahedron. If P̂  is orderable and projectively deformable, then P has more 
one triangular face. 

 

Corollary 3.1.10. Let P be a CH-Coxeter polyhedron and  P̂  be its Coxeter orbifold structure of P. 

Suppose that P is not a tetrahedron. If P̂  is orderable and projectively deformable, then P has 
exactly two triangular face and both are disjoint. 
 

3.2 Main Results. Now we are ready to establish the main results. 

 

Theorem 3.2.1. Let P be a 3-dimensional CH-Coxeter polyhedron and P̂  be its Coxeter orbifold 

structure of P. Suppose that P is not a tetrahedron. If P̂  is orderable and projectively deformable. 
Then the total number of combinatorial polyhedron of such P is at most 5 and P is one of the 

combinatorial polyhedral in figure 1. 
 

Proof. By proposition 3.1.6, 10v   and the polyhedral are trivalent. ODCH-Coxeter polyhedral are 

By Steinitz’s theorem 2.3.6, the combinatorial polyhedral of ODCH-Coxeter polyhedral are 3-

connected simple planar graphs. Using Plantri program, 
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Deformable Compact Coxeter Polyhedra 
                                       Output of Plantri Program 

    Name          Vertex        3-connected trivalent graphs 

      T             4        bcd, adc, abd, acb, 

      P6             6        bcd, aef, afd, ace, bdf, bec, 

      P8-1             8        bcd, aef, afg, agh, bhf, bec, chd, dge, 

      P8-2             8        bcd, aef, afg, age, bdh, bhc, chd,egf, 

      P10-1             10        bcd, aef, afg, ahi, bjf, bec, cjh, dgi,dhj, eig, 

      P10-2             10        bcd, aef, afd, acg, bhi, bic, djh, egj, ejf, gih, 

      P10-3             10        bcd, aef, agd, ach, bif, beg, cf, dji, ehj, gih, 

      P10-4             10        bcd, aef, afg, agh, bhi, bic, cjd, dje, ejf, gih, 

      P10-5             10        bcd, aef, agh, ahe, bdi, bjg, cfj, cid, eh, fig, 

                                 Table 1. Total 9 graph with 10v   

 

we obtain all the trivalent 3-connected simple planar graph with 10v    as follows: 

         We obtain total 9 graphs as in table 1. 

 P8-2 and P10-4 don’t have triangular faces, therefore by proposition 3.1.9, P8-2 and P10-4 are 

not orderable. 

 P10-5 has only one triangular face. Therefore, by corollary 3.1.10, P10-5 is not orderable. 

 P10-3 has 3 triangular faces. Therefore, by corollary 3.1.10, P10-3 is not orderable. 

Therefore the combinatorial polyhedron is one of T, P6, P8-1, P10-1, P10-2. 

 

Theorem 3.2.2. The number of combinatorial polyhedral of ODCH Coxeter polyhedral is five. 
 

Proof. By the theorem 3.2.1, the combinatorial polyhedron of ODCH Coxeter orbifold is one of the 

polyhedral T, P6, P8-1, P10-1 and P10-2. If we can assign some order in each edge of the 
polyhedron, then each polyhedron possesses ODCH Coxeter orbifold structure. 

We assign the order to the edges of the polyhedron T, P6, P8-1, P10-1, P10-2 as in the following 

figures and then we assign the order of the faces. We verify that each of the following figure with 
edge orders satisfy orderability condition and hence they have ODCH Coxeter with orbifold structure. 

In the tetrahedron T, each face of tetrahedron T adjacent with exactly three other faces, we can assign 

face order arbitrarily to make T orderable. 
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IV. Conclusion 

In this article, we proved that the number of combinatorial polyhedral of oderable and 
deformable compact hyperbolic Coxeter polyhedral in real projective space is exactly five. Form these 

combinatorial polyhedral, it can be extended to find all the 3-dimensional compact hyperbolic Coxeter 

polyhedral which are orderable and deformable in real projective space. 
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