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Abstract: In the recent past, different variants of Newton’s method with cubic convergence have become 

popular iterative methods to find the roots of non-linear equations. In this paper, a new class of Newton’s 

method for solving a single nonlinear equation is proposed. This method is the generalization of Simpson’s 

integration rule applied on the Newton’ theorem.  Some of the existing methods become special cases of this 

method.  Third order convergence of the proposed methods is established.  Numerical examples are provided.  A 

comparison study is done to show the efficiency of this method for different parameters in the method. 
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I. Introduction 
 A frequently occurring and most important problem of applied mathematics and engineering is to find a 
root of the equation  

   𝑓 𝑥 = 0        (1) 

where f ∶ D ⊆ R → R for an open interval D is a scalar function.  Newton’s method is one of the famous iterative 

methods to solve equation (1).  It is well known that it has quadratic convergence.  The iterative formula of 

Newton’s method is given by 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓 ′ 𝑥𝑛  
 , 𝑛 = 0, 1 ,2…      (2) 

 By improving Newton’s method, Chebyshev [1] derived a cubic convergent iterative method which 

requires computing of second derivative of the function (1).  Weerakoon et al [2] improved the order of 

convergence to three via trapezoid rule on Newton’s theorem and obtained Arithmetic Newton’s method.  

Hasanov et al [3] modified Newton’s method with a third order convergent method by using Simpson’s rule.  

Nedzhibov [4] gave many classes of iterative methods using different quadrature rules.  Later many authors [5, 

6, 7, 9] proposed different variants of Newton’s method of order three.  Babajee et al [8] took eight different 

variants of Newton’s method and analyzed the relationship between them.   They explored the properties of 

arithmetic mean Newton’s method and explained third order accuracy via the Tailor’s series expansion.  Tibor et 

al [10] suggested geometric mean Newton’s method for simple and multiple roots and showed this method is of 

order three for simple roots and order one for multiple roots.  Ababneh [11] modified Newton’s method using 

contra-harmonic mean instead of Arithmetic mean. The advantage of all the above methods is that they require 
only the first derivative of the function and has cubic convergence.   

In this paper, we propose a generalization of the Simpson-Newton’s method [3, 12] where Simpson’s 

integration rule is applied for approximating the integral in the Newton’s theorem.  We find that some of the 

existing methods are special cases of the proposed method.  Third order convergence of the proposed method is 

established.  In Section II, we present some definitions related to our study.  Some known variants of Newton’s 

method are discussed in Section III.  Section IV presents the new method and its analysis of convergence and 

Section V gives numerical results.  Finally, a discussion is carried out on the merits and demerits of the 

proposed method in Section VI. 

 

II. Preliminaries 
Definition 2.1 [2]: Let 𝛼 ∈ 𝑅,  𝑥𝑛 ∈ 𝑅,  n = 0, 1, 2,  .  Then the sequence {𝑥𝑛 } is said to converge to 𝛼 if 

𝑙𝑖𝑚
𝑛→∞

 𝑥𝑛 − 𝛼 = 0.  If, in addition, there exist a constant 𝑐 ≥ 0, an integer 𝑛0 ≥ 0 and p ≥ 0 such that for all 

𝑛 > 0,   𝑥𝑛+1 − 𝛼 ≤ 𝑐 𝑥𝑛 − 𝛼 P, then {𝑥𝑛 } is said to converge to 𝛼 with order p.  If p = 2 or 3, the convergence 

is said to be quadratic or cubic respectively. 

 

Definition 2.2[2]:  Let 𝛼 be a root of the function (1)and suppose that𝑥𝑛−1, 𝑥𝑛  and 𝑥𝑛+1 are three successive 

iterations closer to the root 𝛼. Then, the computational order of convergence (COC) denoted by 𝜌 can be 

approximated using the formulaρ ≈
ln  (xn +1−α)/(xn−α) 

ln  (xn−α)/(xn−1−α) 
 . 

 



Generalized Simpson-Newton's Method for Solving Nonlinear Equations with Cubic Convergence 

www.iosrjournals.org                                                        59 | Page 

III. Some Known Variants of Newton’s Method 
 Let 𝛼 be a simple root of a sufficiently differentiable function 𝑓(𝑥).  Consider the numerical solution of 

the function 𝑓 𝑥 = 0.   From Newton’s theorem, we have 

𝑓 𝑥 = 𝑓 𝑥𝑛  +  𝑓 ′ 𝑡 𝑑𝑡 .
𝑥

𝑥𝑛
        (3)  

  

Arithmetic Mean Newton’s method (AN): By using the trapezoidal rule in (3), we obtain 

 𝑓′ 𝑡 𝑑𝑡
𝑥

𝑥𝑛
≈

(𝑥−𝑥𝑛 )

2𝑘
 𝑓′ 𝑥𝑛  + 2 𝑓′  𝑥𝑛 −

𝑖𝑓  𝑥𝑛  

𝑘𝑓 ′  𝑥𝑛  
 𝑘−1

𝑖=1 + 𝑓′  𝑥   .    (4) 

From equations (3) and (4), a new approximation 𝑥n+1 for  𝑥 when k = 1, we get arithmetic mean Newton’s 

method [2]   

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  +𝑓
′  𝑥𝑛+1 

  .        (5)  

Since equation (5) is implicit, we can overcome this implicit nature by the use of Newton’s iterative step (2).  

However, we denote 𝑥n+1  as  yn  here-in-afterwards, where 

𝑦𝑛 = 𝑥𝑛 −
𝑓 𝑥𝑛  

𝑓 ′  𝑥𝑛  
 , 𝑛 = 0, 1, 2,…  .        (6) 

 

Midpoint Newton’s method (MN): If the integral in (3) is approximated using the midpoint integration rule 

instead of trapezoidal rule, we get the midpoint Newton’s method [6] 

𝑥𝑛+1 = 𝑥𝑛 −  
𝑓 𝑥𝑛  

𝑓 ′  
𝑥𝑛+𝑦𝑛

2
 
 , 𝑛 = 0, 1, 2,…,  where 𝑦𝑛  is calculated from (6). 

   

Trapezoidal-Newton’s method (TN): From equations (3) and (4), one obtains a new approximation for k = 2 

𝑥𝑛+1 = 𝑥𝑛 −  
4𝑓 𝑥𝑛  

𝑓  ′  𝑥𝑛  +2𝑓  ′  
𝑥𝑛+𝑦𝑛

2
 +𝑓  ′  𝑦𝑛  

 ,        

where 𝑦𝑛  is calculated from (6). The above method is called as Trapezoidal-Newton’s method [4]. 

 

Simpson-Newton’s method (SN): Simpson’s 
1

3
 integration rule is used to find the value of the integral in (3) 

to obtain the Simpson-Newton’s method [3] as follows: 

 𝑓′ 𝑡 𝑑𝑡
𝑥

𝑥𝑛
≈

(𝑥−𝑥𝑛 )

6
[𝑓′(𝑥𝑛 ) + 4𝑓′  

𝑥+𝑥𝑛

2
 + 𝑓′ 𝑥 ] .      (7) 

Simplifying and computing for 𝑥n+1 from equation (7), one obtains a new approximation   

𝑥𝑛+1 = 𝑥𝑛 −
6𝑓 𝑥𝑛  

𝑓  ′  𝑥𝑛  +4𝑓  ′  
𝑥𝑛+𝑥𝑛+1

2
 +𝑓  ′  𝑥𝑛+1 

 .       (8) 

Since equation (8) is implicit, replacing xn+1 with   𝑦𝑛   (calculated from (6)) on the right hand side, we get 

𝑥𝑛+1 = 𝑥𝑛 −   
6𝑓 𝑥𝑛  

𝑓  ′  𝑥𝑛  +4𝑓  ′  
𝑥𝑛+𝑦𝑛

2
 +𝑓  ′  𝑦𝑛  

 , 𝑛 = 0, 1, 2,… .     (9) 

 

Harmonic-Simpson-Newton’s method (HSN): After dividing numerator and denominator in equation (9) by 

2 and using harmonic mean instead of arithmetic mean, we obtain Harmonic-Simpson-Newton’s method [12] 

𝑥𝑛+1 = 𝑥𝑛 −   
3𝑓 𝑥𝑛  

2𝑓  ′  𝑥𝑛  𝑓
 ′  𝑦𝑛  

𝑓  ′  𝑥𝑛  +𝑓
 ′  𝑦𝑛  

+2𝑓  ′  
𝑥𝑛+𝑦𝑛

2
 
 , 𝑛 = 0, 1, 2,… .   

 

IV. Generalized Simpson-Newton’s Method 
 Introducing arbitrary parameters m, m1, m2 and m3 in the second term of equation (9), we obtain  

𝑥𝑛+1 = 𝑥𝑛 −  
𝑚𝑓  𝑥𝑛  

𝑚1𝑓
 ′  𝑥𝑛  +𝑚2𝑓

 ′  
𝑥𝑛+𝑦𝑛

2
 +𝑚3𝑓

 ′  𝑦𝑛  
 , 𝑛 = 0, 1, 2,…,   (10) 

where m1+ m2+ m3 = m and 𝑦𝑛  is calculated from (6). 

Remark 1.  (a) If m = m1=1 and  m2 = m3= 0, we get Newton’s method.  (b) If  m =2, m1= m3= 1 and m2 = 0, we 

get Arithmetic Newton’s method.  (c) If m= m2= 1 and m1= m3=0, we get Midpoint Newton’s method. (d) If 

m=4, m1= m3=1 and m2 = 2, we get Trapezoidal Newton’s method.  (e) If m=6, m1=m3= 1, and m2 = 4, we get 

Simpson-Newton’s method.  Hence, we call this method (10) Generalized Simpson-Newton’s method (GSN). 
   

Analysis of Convergence 

In the following theorem, we establish the cubic convergence of the present method (GSN). 

Theorem 4.1: Let 𝛼 ∈ 𝐷, be a simple zero of a sufficiently differentiable function 𝑓:𝐷 ⊆ 𝑅 → 𝑅 for an open 

interval D.  If 𝑥0 is sufficiently closer to 𝛼, then the method (10) has third order convergence. 

Proof. Let 𝛼 be a simple zero of function 𝑓 𝑥 = 0. (That is, 𝑓 𝛼 = 0 and 𝑓′  𝛼 ≠ 0). 
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By expanding 𝑓 𝑥𝑛   and 𝑓′ 𝑥𝑛  by Taylor series about 𝛼, we obtain 

𝑓 𝑥𝑛  = 𝑓′  𝛼 [𝑒𝑛 + 𝑐2𝑒𝑛
2 + 𝑐3𝑒3

3 + 𝑂 𝑒𝑛
4 … ],      (11) 

𝑓′  𝑥𝑛  = 𝑓′  𝛼 [1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒𝑛
2 + 4𝑐4𝑒𝑛

3 + 𝑂 𝑒𝑛
4 … ],     (12) 

where 𝑐𝑘 =
𝑓 𝑘  𝛼 

𝑘 !𝑓 ′ 𝛼 
 ,𝑘 = 2,3,…and 𝑒𝑛 = 𝑥𝑛 − 𝛼 .  Dividing equation (11) by (12), we get 

𝑓 𝑥𝑛  

𝑓′  𝑥𝑛  
= 𝑒𝑛 − 𝑐2𝑒𝑛

2 + 2 𝑐2
2 − 𝑐3 𝑒𝑛

3 + 𝑂(𝑒𝑛
4).    Hence, we get from (6) 

𝑦𝑛 = 𝛼 + 𝑐2𝑒𝑛
2 + 2 𝑐3 − 𝑐2

2 𝑒𝑛
3 + 𝑂(𝑒𝑛

4).        (13) 

Also, we have 
𝑦𝑛+ xn

2
=  α +

1

2
en +

1

2
c2en

2 +  c3 − c2
2 en

3 + O en
4 .      (14) 

Expanding   𝑓′ 𝑦𝑛  by Tailor’s series about 𝛼 and using (13), we get 

𝑓′ 𝑦𝑛  =  𝑓′ 𝛼  [1+2c2
2en

2 + O(en
3 )].       (15) 

 

Again expanding 𝑓′  
xn +𝑦𝑛

2
 by Tailor’s series about 𝛼 and using (14), we get 

 𝑓′  
xn +𝑦𝑛

2
 =  𝑓′ α  [1+c2en +  c2

2 +
3

4
c3 en

2 + O(en
3 )] .     (16) 

From (12), (15), (16) and taking m1+m2+m3= m, we have  

m1𝑓′ xn + m2𝑓
′  

xn +𝑦𝑛

2
 + m3𝑓

 ′ yn = m𝑓′ 𝛼  [1+c2  
2m1+m2

m
 en +  c2

2  
2m1+m2

m
 + 3c3  

m1+
m 2

4

m
  en

2 + O(en
3)] .  

(17)  

Then from equation (11) and (17), we get 

𝑚𝑓  𝑥𝑛  

m1f ′  xn  +m2 f ′  
x n +𝑦𝑛

2
 +m3f ′  yn  

= 𝑒𝑛 + 𝑒𝑛
2  𝑐2 −

𝑐2

𝑚
 2𝑚1 + 𝑚2  + 𝑒𝑛

3  𝑐3  1 − 3  
m1+

m 2
4

m
  +  c2

2  −2 +

                                                        2m1+m2m2+𝑂𝑒𝑛4.       (18) 

The above equation (18) is substituted in (10) to get 

𝑥𝑛+1 = 𝑥𝑛 − [𝑒𝑛 +  𝑒𝑛
2  𝑐2 −

𝑐2

𝑚
 2𝑚1 + 𝑚2  + 𝑒𝑛

3[𝑐3  1 − 3  
m1+

m 2
4

m
  + c2

2  −2 +  
2m1+m2

m
 

2

 ] + 𝑂 𝑒𝑛
4 ].   

(19) 

Since  𝑥𝑛 = 𝑒𝑛 + 𝛼, we finally obtain from (19) 

𝑒𝑛+1 = 𝑒𝑛
2  −𝑐2 +

𝑐2

𝑚
 2𝑚1 + 𝑚2  + 𝑒𝑛

3[𝑐3  −1 + 3  
m1+

m 2
4

m
  + c2

2  2 −  
2m 1+m2

m
 

2

 ] + 𝑂 𝑒𝑛
4 ].           

Remark 2. It can be easily verified that the coefficient of 𝑒𝑛
2 will be zero in the above equation for all the 

variants of Newton’s method given in Section III.  Hence, cubic convergence is established for GSN for all 

those parameters (m1, m2 and m) satisfying the condition 2𝑚1 + 𝑚2 = 𝑚. 
 

V. Numerical Examples  
Table 1 

 

𝑓 𝑥  
 

X0 

Number of iterations Root 

NM AN MN TN SN HSN 

𝑓1 𝑥  = x
3 
+ x

2
 – 2 1.5 6 5 4 5 5 4 𝛼 =1 

3 8 6 6 6 6 5 

𝑓2 𝑥  = Sin x + x Cos x 1.3 6 5 5 5 5 5 𝛼 = 2.028757838110434 

3 6 5 4 4 4 4 

𝑓3 𝑥 = x
2
– e

x
 – 3x + 2 3 7 5 5 5 5 5 𝛼 = 0.257530285439861 

5 9 7 6 6 6 6 

𝑓4 𝑥  = x e
x
 – 1 3 9 7 6 7 6 6 𝛼 = 0.567143290409784 

4.5 11 8 8 8 8 7 

𝑓5 𝑥  = x
3
 – 10 3 6 5 5 5 5 4 𝛼 = 2.154434690031884 

1 7 NC 6 11 7 5 

𝑓6 𝑥  = e
x
 + x – 20 10 13 9 9 9 9 8 𝛼 = 2.842438953784447 

5 8 6 4 6 6 5 

 

In this section, we present the numerical results of the proposed method (GSN). Also, we examine 

GSN for different values of  m, m1, m2 and m3.  Different functions and number of iterations to find their roots 

are given in Table 1.  Computational Order of Convergence (COC) and the Number of Function Evaluation 

(NOFE) are given in Table 2.  We note that the function 𝑓5 𝑥  is not convergent for x0 = 1, by AN even with 

100 iterations but convergent for all other cases.  Numerical computations are done in the Matlab software with 
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double precision accuracy and the results are presented.   We have used the following stopping criteria 

for the iterative process:   
 𝑥𝑛+1 − 𝑥𝑛  +   𝑓(𝑥𝑛+1) <  , where 𝜀 = 10−14. 

 

Table 2 
𝑓 𝑥   

X0 
COC NOFE 

NM AN MN TN SN HSN NM AN MN TN SN HSN 

𝑓1 𝑥  1.5 2.00 2.99 2.75 2.99 2.99 2.80 12 15 12 20 20 16 

3 2.00 2.98 2.99 2.99 2.99 2.80 16 18 18 24 24 20 

𝑓2 𝑥  1.3 1.99 3.82 3.17 3.07 3.12 3.08 12 15 15 20 20 20 

3 1.99 4.10 2.71 2.88 2.60 2.70 12 15 12 16 16 16 

𝑓3 𝑥  3 2.00 3.04 3.39 2.91 2.66 2.78 14 15 15 20 20 20 

5 2.00 3.01 3.29 3.20 3.16 2.69 18 21 18 24 24 24 

𝑓4 𝑥  3 2.00 2.99 2.88 2.99 2.84 2.93 18 21 18 28 24 24 

4.5 2.00 2.96 2.99 2.98 2.99 2.91 22 24 24 32 32 28 

𝑓5 𝑥  3 2.00 2.99 2.99 2.99 2.99 2.81 12 15 15 20 20 16 

1 2.00 NC 2.91 3.01 3.02 2.95 14 NC 18 44 36 20 

𝑓6 𝑥  10 2.00 2.93 3.00 2.98 2.99 2.94 26 27 27 36 28 32 

5 2.00 2.99 3.00 2.99 2.99 2.94 16 18 12 24 24 20 

NC – Not Convergent 

 

VI. Discussion 
 The basic advantage of the present method is that it is a generalized class of Newton’s method using 
the Simpson’s formula applied on the Newton’s theorem.  The proposed new class of methods has the advantage 

of evaluating only the first derivative of f(x), third order convergence and requires less number of iterations to 

achieve the desired accuracy.  Also, we find that (see Remark 1) some of the existing methods given in Section 

III are special cases of the proposed GSN.  Few methods like Trapezoidal and Simpson Newton’s methods 

require four function evaluation which is one extra compared to other third-order convergent Newton methods.  

However, this drawback in efficiency is compensated by the decrease in the number of iterations.  The 

motivation behind this contribution is to bring in certain existing methods under one class of method, the 

Generalized Simpson Newton’s method. 
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