I.

On Semi- \mathcal{I}_s **-Open Sets and Semi-** \mathcal{I}_s **-Continuous Functions**

R. Santhi¹, M. Rameshkumar²

¹Department of Mathematics, NGM College, Pollachi-642 001, Tamil Nadu, India. ²Department of Mathematics, P. A. College of Engineering and Technology, Pollachi-642 002, Tamil Nadu, India.

Abstract: We study the concepts of semi- \mathcal{I}_s -open sets and semi- \mathcal{I}_s -continuous functions introduced in [13] and some properties of the functions. Also we introduce notion of semi- \mathcal{I}_s - open and semi- \mathcal{I}_s -closed functions. **Keywords:** semi- \mathcal{I}_s -open set, semi- \mathcal{I}_s -continuous function.

Introduction

Ideal in topological space have been considered since 1930 by Kuratowski[9] and Vaidyanathaswamy[14]. After several decades, in 1990, Jankovic and Hamlett[6] investigated the topological ideals which is the generalization of general topology. Where as in 2010, Khan and Noiri[7] introduced and studied the concept of semi-local functions. The notion of semi-open sets and semi-continuity was first introduced and investigated by Levine [10] in 1963. Finally in 2005, Hatir and Noiri [4] introduced the notion of semi- τ -open sets and semi- τ -continuity in ideal topological spaces. Recently we introduced semi- τ_s -open sets and semi- τ_s -op

In this paper, we obtain several characterizations of semi- \mathcal{I}_s -open sets and semi- \mathcal{I}_s -continuous functions. Also we introduce new functions semi- \mathcal{I}_s -open and semi- \mathcal{I}_s -closed functions

II. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , cl(A) and int(A) denote the closure and interior of A in (X, τ) respectively.

An ideal \mathcal{I} on a topological space (X, τ) is an nonempty collection of subsets of X which satisfies: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$ (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

If (X, τ) is a topological space and τ is an ideal on X, then (X, τ, τ) is called an ideal topological space or an ideal space.

Let P(X) be the power set of X. Then the operator $()^*: P(X) \to P(X)$ called a local function [9] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{ x \in X / U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x \}$. We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no confusion. For every ideal topological space (X, τ, \mathcal{I}) there exists topology τ^* finer than τ , generated by $\beta(\mathcal{I}, \tau) = \{ U \setminus J : U \in \tau \text{ and } J \in \mathcal{I} \}$ but in general $\beta(\mathcal{I}, \tau)$ is not always a topology. Additionally $cl^*(A) = A \cup A^*$ defines Kuratowski closure operator for a topology τ^* finer than τ . Throughout this paper X denotes the ideal topological space (X, τ, \mathcal{I}) and also $int^*(A)$ denotes the interior of A with respect to τ^* .

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be semi-open [10] if there exists an open set U in X such that $U \subseteq A \subseteq cl(U)$. The complement of a semi-open set is said to be semi-closed. The collection of all semi-open (resp. semi-closed) sets in X is denoted by SO(X) (resp. SC(X)). The semi-closure of A in (X, τ) is denoted by the intersection of all semi-closed sets containing A and is denoted by scl(A).

Definition 2.2. For $A \subseteq X$, $A_*(\mathcal{I}, \tau) = \{ x \in X / U \cap A \notin \mathcal{I} \text{ for every } U \in SO(X) \}$ is called the semi-local function[7] of A with respect to \mathcal{I} and τ , where $SO(X, x) = \{ U \in SO(X) / x \in U \}$. We simply write A_* instead of $A_*(\mathcal{I}, \tau)$ in this case there is no ambiguity.

It is given in [2] that $\tau^{*s}(\mathcal{I})$ is a topology on X, generated by the sub basis { $U - E : U \in SO(X)$ and $E \in \mathcal{I}$ } or equivalently $\tau^{*s}(\mathcal{I}) = \{U \subseteq X : cl^{*s} (X - U) = X - U \}$. The closure operator cl^{*s} for a topology $\tau^{*s}(\mathcal{I})$ is defined as follows: for $A \subseteq X$, $cl^{*s}(A) = A \cup A_*$ and int^{*s} denotes the interior of the set A in $(X, \tau^{*s}, \mathcal{I})$. It is known that $\tau \subseteq \tau^*(\mathcal{I}) \subseteq \tau^{*s}(\mathcal{I})$. A subset A of (X, τ, \mathcal{I}) is called semi-*-perfect[8] if $A = A_*$. $A \subseteq (X, \tau, \mathcal{I})$ is called *-semi dense in-itself [8] (resp. Semi-*-closed [8]) if $A \subset A_*$ (resp. $A_* \subseteq A$).

Lemma 2.3. [7] Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then for the semi-local function the following properties hold:

- 1. If $A \subseteq B$ then $A_* \subseteq B_*$.
- 2. If $U \in \tau$ then $U \cap A_* \subseteq (U \cap A)_*$
- 3. $A_* = scl(A_*) \subseteq scl(A)$ and A_* is semi-closed in X.
- 4. $(A_*)_* \subseteq A_*$
- 5. $(A \cup B)_* = A_* \cup B_*$
- 6. If $\mathcal{I} = \{\phi\}$, then $A_* = \operatorname{scl}(A)$.

Definition 2.4. A subset A of a topological space X is said to be

- 1. α -open [12] if A \subseteq int(cl(int(A))),
- 2. pre-open [11] if $A \subseteq int(cl(A))$,
- 3. β -open[1] if A \subseteq cl(int(cl(A))).

Definition 2.5. A subset A of an ideal topological space (X,τ,\mathcal{I}) is said to be

- 1. α - τ -open[4] if A \subseteq int(cl^{*}(int(A))),
- 2. semi- \mathcal{I} -open [4] if A \subseteq cl^{*}(intA)),
- 3. pre- τ -open [3] if A \subseteq int(cl^{*}(A)).

Definition2.6. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. α - \mathcal{I}_s -open[13] if A \subseteq int(cl^{*s}(int(A))),
- 2. semi- \mathcal{I}_s -open [13] if A \subseteq cl^{*s}(intA)),
- 3. pre- \mathcal{I}_s -open [13] if A \subseteq int(cl^{*s}(A)).

By SISO(X, τ), we denote the family of all semi- \mathcal{I}_s -open sets of a space (X, τ , \mathcal{I}).

III. Semi- \mathcal{I}_s -open sets

Theorem3.1. A subset A of a space (X, τ, τ) is semi- τ_s -open if and only if $cl^{*s}(A) = cl^{*s}(int(A))$. **Proof.** Let A be semi- τ_s -open, we have $A \subseteq cl^{*s}(int(A))$. Then $cl^{*s}(A) \subseteq cl^{*s}(int(A))$. Obviously $cl^{*s}(int(A)) \subseteq cl^{*s}(A) = cl^{*s}(int(A))$. The converse is obvious.

Theorem3.2. A subset A of a space (X, τ, τ) is semi- \mathcal{I}_s -open if and only if there exists $U \in \tau$ such that $U \subseteq A \subseteq cl^{*s}(U)$.

Proof. Let A be semi- \mathcal{I}_s -open, we have $A \subseteq cl^{*s}(int(A))$. Take int(A) = U. Then we have $U \subseteq A \subseteq cl^{*s}(U)$. Conversely, let $U \subseteq A \subseteq cl^{*s}(U)$ for some $U \in \tau$. Since $U \subseteq A$ we have $U \subseteq int(A)$ and hence $cl^{*s}(U) \subseteq cl^{*s}(int(A))$. Thus we obtain $A \subseteq cl^{*s}(int(A))$.

Theorem3.3. If A is semi- \mathcal{I}_s -open set in a space (X, τ, \mathcal{I}) and $A \subseteq B \subseteq cl^{*s}(A)$, then B is semi- \mathcal{I}_s -open in (X, τ, \mathcal{I}) .

Proof. Since A is semi- \mathcal{I}_s -open, there exists an open set U such that $U \subseteq A \subseteq cl^{*s}(U)$. Then we have $U \subseteq A \subseteq B \subseteq cl^{*s}(A) \subseteq cl^{*s}(cl^{*s}(U)) = cl^{*s}(U)$ and hence $U \subseteq B \subseteq cl^{*s}(A)$. By Theorem 3.2, we obtain B is semi- \mathcal{I}_s -open.

Theorem3.4. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. 1. If $U_{\alpha} \in SISO(X, \tau)$ for each $\alpha \in \Delta$, then $\cup \{U_{\alpha} : \alpha \in \Delta\} \in SISO(X, \tau)$, 2. If $A \in SISO(X, \tau)$ and $B \in \tau$, then $A \cap B \in SISO(X, \tau)$. **Proof.** 1. Since $U_{\alpha} \in SISO(X, \tau)$, we have $U_{\alpha} \subseteq cl^{*s}(int(U_{\alpha}))$ for each $\alpha \in \Delta$. Thus by using Lemma 2.3, we obtain

$$\bigcup_{\alpha \in \Delta} U_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} cl^{*s}(int(U_{\alpha})) \subseteq \bigcup_{\alpha \in \Delta} \{(int(U_{\alpha}))_{*} \cup (int(U_{\alpha}))\} \subseteq \left(\bigcup_{\alpha \in \Delta} (int(U_{\alpha}))\right)_{*} \cup int\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right)$$

$$\subseteq \left(\operatorname{int}\left(\bigcup_{\alpha \in \Delta} U_{\alpha} \right) \right)_{*} \cup \operatorname{int}\left(\bigcup_{\alpha \in \Delta} U_{\alpha} \right) = \operatorname{cl}^{*s}\left(\operatorname{int}\left(\bigcup_{\alpha \in \Delta} U_{\alpha} \right) \right).$$

This shows that $U_{\alpha \in \Delta} U_{\alpha} \in SISO(X, \tau)$.

2. Let $A \in SISO(X, \tau)$ and $B \in \tau$. Then $A \subseteq cl^{*s}(int(A))$ and by using Lemma 2.3, we have $A \cap B \subseteq cl^{*s}(int(A)) \cap B = ((int(A))_* \cup (int(A))) \cap B = ((int(A))_* \cap B) \cup (int(A) \cap B) \subseteq (int(A) \cap B)_* \cup int(A \cap B) = (int(A \cap B))_* \cup int(A \cap B) = cl^{*s}(int(A \cap B))$. This shows that $A \cap B \in SISO(X, \tau)$.

Definition3.5. A subset F of a space (X, τ, \mathcal{I}) is said to be semi- \mathcal{I}_s -closed if its complement is semi- \mathcal{I}_s -open.

Remark3.6. For a subset A of a space (X, τ, \mathcal{I}) , we have $X - int(cl^{*s}(A)) \neq cl^{*s}(int(X - A))$ as shown from the following example.

Example3.7. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Then we put $A = \{b\}$, we have $cl^{*s}(int(X - A)) = cl^{*s}(\{a\}) = \{a\}$ and $X - int(cl^{*s}(A)) = X - int(\{b\}) = \{a, c, d\}$.

Theorem 3.8. If a subset A of a space (X, τ, \mathcal{I}) is semi- \mathcal{I}_s -closed, then $int(cl^{*s}(A)) \subseteq A$. **Proof.** Since A is semi- \mathcal{I}_s -closed, $X - A \in SISO(X, \tau)$. Since $\tau^{*s}(I)$ is finer than τ , we have $X - A \subseteq cl^{*s}(int(X - A)) \subseteq cl(int(X - A)) = X - int(cl(A)) \subseteq X - int(cl^{*s}(A))$. Therefore we obtain $int(cl^{*s}(A)) \subseteq A$.

Corollary3.9. Let A be a subset of a space (X, τ, τ) such that $X - int(cl^{*s}(A)) = cl^{*s}(int(X - A))$. Then A is semi- τ_s -closed if and only if $int(cl^{*s}(A)) \subseteq A$.

Proof. This is an immediate consequence of Theorem 3.8.

Theorem3.10. [8] Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq Y \subseteq X$, where Y is α -open in X. Then $A_*(\mathcal{I}_Y, \tau|_Y) = A_*(\mathcal{I}, \tau) \cap Y$.

Theorem3.11. Let (X, τ, \mathcal{I}) be an ideal topological space. If $Y \in \tau$ and $W \in SISO(X)$, then $Y \cap W \in SISO(Y, \tau|_Y, \mathcal{I}_Y)$.

Proof. Since Y is open, we have $\operatorname{int}_{Y}(A) = \operatorname{int}(A)$ for any subset A of Y. Now $Y \cap W \subseteq Y \cap \operatorname{cl}^{*s}(\operatorname{int}(W)) = Y \cap (\operatorname{int}(W))_* \cup \operatorname{int}(W)) = [(Y \cap (\operatorname{int}(W))_*) \cup (Y \cap \operatorname{int}(W))] \cap Y = [Y \cap (Y \cap (\operatorname{int}(W)))_*] \cup [(Y \cap \operatorname{int}(W)) \cap Y] = Y \cap [\operatorname{int}_Y (Y \cap W)]_* \cup (Y \cap [\operatorname{int}_Y (Y \cap W)]) = [\operatorname{int}_Y (Y \cap W)]_* (\mathcal{I}_Y, \tau|_Y) \cup [\operatorname{int}_Y (Y \cap W)] = \operatorname{cl}_Y^{*s}(\operatorname{int}_Y(Y \cap W))$. This shows that $Y \cap W \in SISO(Y, \tau|_Y, \mathcal{I}_Y)$.

IV. Semi- \mathcal{I}_s -continuous functions

Definition 4.1. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be semi- \mathcal{I}_s -continuous [13] (resp. semi- \mathcal{I} -continuous [4], semi-continuous [10]) if $f^{-1}(V)$ is semi- \mathcal{I}_s -open (resp. semi- \mathcal{I} -open, semi-open) in (X, τ, \mathcal{I}) for each open set V of (Y, σ) .

Definition4.2. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is said to be \mathcal{I}_s -irresolute (resp. \mathcal{I} -irresolute [5]) if f^{-1} (V) is semi- \mathcal{I}_s -open (resp. semi- \mathcal{I} -open) in (X, τ, \mathcal{I}) for each semi- \mathcal{J}_s -open set(resp. semi- \mathcal{J} -open set) V of (Y, σ, \mathcal{J}) .

Remark4.3. It is obvious that continuity implies semi- \mathcal{I}_s -continuity, semi- \mathcal{I}_s -continuity implies semi- \mathcal{I} -continuity implies semi-continuity.

Theorem 4.4. For a function $f: (X, \tau, T) \rightarrow (Y, \sigma)$, the following are equivalent:

1. f is semi- \mathcal{I}_s -continuous,

2. for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $W \in SISO(X, \tau)$ containing x such that $f(W) \subseteq V$,

3. the inverse image of each closed set in Y is semi- \mathcal{I}_s -closed.

Proof. (1) \Rightarrow (2). Let $x \in X$ and V be any open set of Y containing f(x). Set $W = f^{-1}(V)$, then by Definition 4.1, W is a semi- \mathcal{I}_s -open set containing x and $f(W) \subseteq V$.

(2) \Rightarrow (3). Let F be a closed set of Y. Set V = Y - F, then V is open in Y. Let $x \in f^{-1}(V)$, by (2), there exists a semi- \mathcal{I}_s -open set W of X containing x such that $f(W) \subseteq V$. Thus, we obtain $x \in W \subseteq cl^{*s}(int(W)) \subseteq C$

 $cl^{*s}(int(f^{-1}(V)))$ and hence $f^{-1}(V) \subseteq cl^{*s}(int(f^{-1}(V)))$. This shows that $f^{-1}(V)$ is semi- \mathcal{I}_s -open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(V)$ is semi- \mathcal{I}_s -closed in X.

(3) \Rightarrow (1). Let V be a open set of Y. Set F = Y - V, then F is closed in Y. $f^{-1}(V) = X - f^{-1}(Y - V) = X - f^{-1}(F)$. By (3) $f^{-1}(V)$ is semi- \mathcal{I}_s -open in X.

Theorem 4.5. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, be semi- \mathcal{I}_s -continuous and $U \in \tau$. Then the restriction $f|_U : (U, \tau|_U, \mathcal{I}_U) \to (Y, \sigma)$ is semi- \mathcal{I}_s -continuous.

Proof. Let V be any open set of (Y, σ) . Since f is semi- \mathcal{I}_s -continuous, $f^{-1}(V) \in SISO(X, \tau)$ and by Theorem 3.11, $(f \mid_U)^{-1}(V) = f^{-1}(V) \cap U \in SISO(U, \tau\mid_U)$. This shows that $f \mid_U : (U, \tau\mid_U, \mathcal{I}_U) \to (Y, \sigma)$ is semi- \mathcal{I}_s -continuous.

Theorem 4.6. For function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ and $g: (Y, \sigma, \mathcal{J}) \to (Z, \eta)$, the following hold. 1. $g \circ f$ is semi- \mathcal{I}_s -continuous if f is semi- \mathcal{I}_s -continuous and g is continuous. 2. $g \circ f$ is semi- \mathcal{I}_s -continuous if f is \mathcal{I}_s -irresolute and g is semi- \mathcal{I}_s -continuous. **Proof.** It is Obvious.

Theorem 4.7. A function $f : (X, \tau, \tau) \to (Y, \sigma)$ is semi- \mathcal{I}_s -continuous if and only if the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(X)) for each $x \in X$, is semi- \mathcal{I}_s -continuous.

Proof. Necessity. Suppose that *f* is semi- \mathcal{I}_s -continuous. Let $x \in X$ and W be any open set of $X \times Y$ containing g(x). Then there exists a basic open set $U \times V$ such that $g(x) = (x, f(x)) \in U \times V \subseteq W$. Since *f* is semi- \mathcal{I}_s -continuous, then there exists a semi- \mathcal{I}_s -open set U_o of X containing x such that $f(U_o) \subseteq V$. By Theorem 3.4 $U_o \cap U \in SISO(X, \tau)$ and $g(U_o \cap U) \subseteq U \times V \subseteq W$. This shows that g is semi- \mathcal{I}_s -continuous.

Sufficiency: Suppose that g is semi- \mathcal{I}_s -continuous. Let $x \in X$ and V be any open set of Y containing f(x). Then $X \times V$ is open in $X \times Y$ and by semi- \mathcal{I}_s -continuity of g, there exists $U \in SISO(X, \tau)$ containing x such that $g(U) \subseteq X \times V$. Therefore we obtain $f(U) \subseteq V$. This shows that f is semi- \mathcal{I}_s -continuous.

Theorem 4.8. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be semi- \mathcal{I}_s -continuous and f^{-1} $(V_*) \subseteq (f^{-1} (V))_*$ for each $V \in \sigma$. Then f is \mathcal{I}_s -irresolute.

Proof. Let B be any semi- \mathcal{J} -open set of (Y, σ, \mathcal{J}) . By Theorem 3.2, there exists $V \in \sigma$ such that $V \subseteq B \subseteq cl^{*s}(V)$. Therefore, we have $f^{-1}(V) \subseteq f^{-1}(B) \subseteq f^{-1}(cl^{*s}(V)) \subseteq cl^{*s}(f^{-1}(V))$. Since f is semi- \mathcal{I}_s -continuous and $V \in \sigma$, $f^{-1}(V) \in SISO(X, \tau)$ and hence by Theorem 3.3, $f^{-1}(B)$ is semi- \mathcal{I}_s -open in (X, τ, \mathcal{I}) . This shows that f is \mathcal{I}_s -irresolute.

V. Semi- \mathcal{I}_s -open and semi- \mathcal{I}_s -closed functions

Definition 5.1. A function $f : (X, \tau) \to (Y, \sigma, \mathcal{J})$ is called semi- \mathcal{I}_s -open (resp. semi- \mathcal{I}_s -closed) if for each $U \in \tau$ (resp. U is closed) $f(U) \in SISO(Y, \sigma, \mathcal{J})$ (resp. f(U) is semi- \mathcal{I}_s -closed set).

Definition 5.2. [5] A function $f : (X, \tau) \to (Y, \sigma, \mathcal{J})$ is called semi- \mathcal{I} -open (resp. semi- \mathcal{I} -closed) if for each $U \in \tau$ (resp. U is closed) f(U) is semi- \mathcal{I} -open (resp. f(U) is semi- \mathcal{I} -closed) set in (Y, σ, \mathcal{J}) .

Remark 5.3. 1. Every semi- \mathcal{I}_s -open (resp. semi- \mathcal{I}_s -closed) function is semi-open (resp. semi-closed) and the converses are false in general.

2. Every semi- \mathcal{I}_s -open (resp. semi- \mathcal{I}_s -closed) function is semi- \mathcal{I} -open (resp. semi- \mathcal{I} -closed) and the converses are false in general.

3. Every open function is semi- \mathcal{I}_s -open but the converse is not true in general.

Example 5.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}\}, \sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{J} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{J})$ as follows f(a) = b, f(b) = c, f(c) = f(d) = a. Then f is semi-open, but it is not semi- \mathcal{I}_s -open.

Example 5.5. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}\}$, $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{J} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Define a function $f: (X, \tau) \rightarrow (X, \sigma, \mathcal{J})$ as follows f(a) = a, f(b) = c, f(c) = f(d) = d. Then f is semi- \mathcal{I} -open, but it is not semi- \mathcal{I} -open.

Example 5.6. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{c\}, \{a, b, d\}\}$, $\sigma = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{J} = \{\phi, \{a\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{J})$ is semi- \mathcal{I}_s -open, but it is not open.

Example 5.7. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}\}$, $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{J} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{J})$ is semi-closed, but it is not semi- \mathcal{I}_s -closed.

Theorem 5.8. A function $f : (X, \tau) \to (Y, \sigma, \mathcal{J})$ is semi- \mathcal{I}_s -open if and only if for each $x \in X$ and each neighbourhood U of x, there exists $V \in SISO(Y, \sigma)$ containing f(x) such that $V \subseteq f(U)$.

Proof. Suppose that *f* is a semi- \mathcal{I}_s -open function. For each $x \in X$ and each neighbourhood U of x, there exists $U_o \in \tau$ such that $x \in U_o \subseteq U$. Since *f* is semi- \mathcal{I}_s -open, $V = f(U_o) \in SISO(Y, \sigma)$ and $f(x) \in V \subseteq f(U)$.

Conversely, let U be an open set of (X, τ) . For each $x \in U$, there exists $V_x \in SISO(Y, \sigma)$ such that $f(x) \in V_x \subseteq f(U)$. Therefore we obtain $f(U) = \bigcup \{V_x : x \in U\}$ and hence by Theorem 3.4, $f(U) \in SISO(Y, \sigma)$. This shows that f is semi- \mathcal{I}_s -open.

Theorem 5.9. Let $f: (X, \tau) \to (Y, \sigma, \mathcal{J})$ be a semi- \mathcal{I}_s -open (resp. semi- \mathcal{I}_s -closed) function. If W is any subset of Y and F is a closed (resp. open) set of X containing $f^{-1}(W)$, then there exists a semi- \mathcal{I}_s -closed (resp. semi- \mathcal{I}_s -open) subset H of Y containing W such that $f^{-1}(H) \subseteq F$.

Proof. Suppose that f is a semi- \mathcal{I}_s -open function. Let W be any subset of Y and F a closed subset of X containing $f^{-1}(W)$. Then X – F is open and since f is semi- \mathcal{I}_s -open, f(X - F) is semi- \mathcal{I}_s -open. Hence H = Y - f(X - F) is semi- \mathcal{I}_s -closed. It follows from $f^{-1}(W) \subseteq F$ that $W \subseteq H$. Moreover we obtain $f^{-1}(H) \subseteq F$. For a semi- \mathcal{I}_s -closed function can be proved similarly.

Theorem 5.10. For any bijective function $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{J})$, the following are equivalent:

1. f^{-1} : $(X, \sigma, \mathcal{J}) \rightarrow (X, \tau)$ is semi- \mathcal{I}_s -continuous, 2. f is semi- \mathcal{I}_s -open, 3. f is semi- \mathcal{I}_s -closed, **Proof.** Obvious.

References

- M. E. Abd El-Monsef, S. N. El Deep and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2]. M.E. Abd El-Monsef, E.F. Lashien and A.A. Nasef, Some topological operators via ideals, Kyungpook Math. J., 32, No. 2 (1992), 273-284.
- [3]. J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, http://arxiv.org/abs/ Math. GN/9901017, 5 Jan. 1999(Internet).
- [4]. E. Hatir and T.Noiri, On decompositions of continuity via idealization, Acta. Math. Hungar. 96(4)(2002), 341-349.
- [5]. E. Hatir and T.Noiri, On semi-*I*-open sets and semi-*I*-continuous functions, Acta. Math. Hungar. 107(4)(2005), 345-353.
- [6]. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [7]. M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42.
- [8]. M. Khan and T. Noiri, On gl -closed sets in ideal topological space, J. Adv. Stud. in Top., 1(2010),29-33.
- [9]. K. Kuratowski. Topology, Vol. I, Academic press, New York, 1966.
- [10]. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [11]. A. S. Mashour, M. E. Abd. El-Monsef and S. N. El-deeb, On pre-continuous and weak pre-continuous mapping, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [12]. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [13]. R. Santhi and M. Rameshkumar, A decomposition of continuity in ideal by using semi-local functions, (Submitted).
- [14]. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.