On Generalized $\psi-|C, \alpha, \beta, \gamma, \delta|_{k}$-Summability Factor

Aditya Kumar Raghuvanshi, B.K. Singh \& Ripendra Kumar
Department of Mathematics IFTM University Moradabad (U.P.) India-244001

Abstract: In this paper we have established a theorem on $\psi-|C, \alpha, \beta, \gamma, \delta|_{k}$-summability factor, which gives some new results.

I. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (Bari [2]).
A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in B V$ if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$.

A positive sequence $X=\left(X_{n}\right)$ is said to be quasi- σ-power increasing sequence if there exist a constant $k=k(\sigma, X) \geq 1$ such that $k n^{\sigma} X_{n} \geq m^{\sigma} X_{m}, n \geq m \geq 1$ (Leindler [7]).

Let ψ_{n} be a sequence of complex numbers. Let $\sum a_{n}$ be a given infinite series with partial sum $\left(s_{n}\right)$. We denote by $z_{n}^{\alpha, \beta}$ and $t_{n}^{\alpha, \beta}$ the $\mathrm{n}^{\text {th }}$ Cesaro means of order (α, β) with $\alpha+\beta>-1$ of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$ respectively (Borwein [5]).
$z_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=0}^{n} A_{n-v}^{\alpha} A_{v}^{\alpha} s_{v}$
$t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha} A_{v}^{\beta} v a_{v}$
where $A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \alpha+\beta>-1, A_{0}^{\alpha+\beta}=1, A_{-n}^{\alpha+\beta}=0$ for $n>0$.
The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$ and $\alpha+\beta>-1$ (Das [6]) if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|z_{n}^{\alpha, \beta}-z_{n-1}^{\alpha, \beta}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta, \gamma, \delta|_{k}, k \geq 1 \quad \alpha+\beta>-1, \delta \geq 0$ and γ is a real number (Bor [4]) if

$$
\sum_{n=1}^{\infty} n^{\gamma(\partial k+k-1}\left|z_{n}^{\alpha, \beta}-z_{n-1}^{\alpha, \beta}\right|^{k}=\sum_{n=1}^{\infty} n^{\gamma(\partial k+k-1)-k}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty
$$

The series $\sum a_{n}$ is said to be summable $\psi-|C, \alpha|_{k}, k \geq 1, \alpha>-1$ if (Balci [1])
$\sum_{n=1}^{\infty}\left|\psi_{n}\left(z_{n}^{\alpha}-z_{n-1}^{\alpha}\right)\right|^{k}=\sum_{n=1}^{\infty} n^{-k}\left|\psi t_{n}^{\alpha}\right|^{k}<\infty$
And the series $\sum a_{n}$ is said to be summable $\psi-|C, \alpha, \beta, \gamma, \delta|_{k}$ if

$$
\sum_{n=1}^{\infty} n^{\gamma(\partial k+k-1)}\left|\psi_{n}\left(z_{n}^{\alpha, \beta}-z_{n-1}^{\alpha, \beta}\right)\right|^{k}=\sum_{n=1}^{\infty} n^{\gamma(\partial k+k-1)-k}\left|t_{n}^{\alpha, \beta} \psi_{n}\right|^{k}<\infty
$$

II. Known theorem

Tuncer has proved the following theorem
Theorem 2.1 Let $k \geq 1,0 \leq \delta<\alpha \leq 1$ and γ be a real number such that $(\alpha+\beta+1-\gamma(\delta+1)) k>1$ and let the sequences $\left(B_{n}\right)$ and $\left(\lambda_{n}\right)$ such that $\left(B_{n}\right)$ is δ-quasi-monotone with

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|, \lambda_{n} \rightarrow 0 \text { as } n \rightarrow \infty \\
& \sum_{n=1}^{\infty} n \delta_{n} \log n<\infty \text { and } n B_{n} \log n \tag{2}
\end{align*}
$$

is convergent. If the sequence $\left(W_{n}^{\alpha, \beta}\right)$ defined by

$$
\begin{align*}
& W_{n}^{\alpha, \beta}=\left|t_{n}^{\alpha, \beta}\right|, \alpha=1, \beta>-1 \\
& W_{n}^{\alpha, \beta}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, 0<\alpha<1, \beta>-1 \tag{4}
\end{align*}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{n^{\gamma((k+k-1)}}{n^{k}}\left(W_{n}^{\alpha, \beta}\right)^{k}=O(\log m) \operatorname{as} m \rightarrow \infty \tag{5}
\end{equation*}
$$

then $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta, \gamma, \delta|_{k}$.

III. The main result

The aim of this paper is to generalize Theorem 2.1 to $\psi-|C, \alpha, \beta, \gamma, \delta|_{k}$ summability. We shall prove the following theorem.
Theorem 3.1 Let ψ_{n} be the sequence of Complex numbers and let the sequence $\left(B_{n}\right) \&\left(\lambda_{n}\right)$ such that the conditions (1), (2), (3), (4) with
$\sum_{n=1}^{m} \frac{n^{\gamma(\partial k+k-1)}\left|\psi_{n} W_{n}^{\alpha, \beta}\right|^{k}}{n^{k}}=O(\log m) \operatorname{as} m \rightarrow \infty$
are satisfied then the series $\sum a_{n} \lambda_{n}$ is summable $\psi_{n}-|C, \alpha, \beta, \gamma, \delta|_{k}$.

IV. Lemmas

We need the following lemmas for the the proof of our theorem
Lemma 4.1 (Mazhar [9]) Under the condition on $\left(B_{n}\right)$ as taken in the statement of the theorem, we have following

$$
\begin{equation*}
n B_{n} \log n=O(1) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n \log n\left|\Delta B_{n}\right|<\infty \tag{7}
\end{equation*}
$$

Lemma 4.2 (Bor [4]) If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$ then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{8}
\end{equation*}
$$

V. Proof of the theorem

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the ${ }^{\text {th }}(C, \alpha, \beta)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$ then we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v} .
$$

Using Abel's transformation.

$$
\begin{aligned}
& T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p} \\
& +\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
& \left|T_{n}^{\alpha, \beta}\right| \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right| \\
& +\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} W_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| W_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} \quad \text { (say) }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha, \beta}\right|^{k}+\left|T_{n, 2}^{\alpha, \beta}\right|^{k}\right)
$$

In order to complete the proof of theorem, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\gamma(\partial k+k-1)-k}\left|T_{n, r}^{\alpha, \beta}, \psi_{n}\right|^{k}<\infty, r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ we get that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\gamma(\delta k+k-1)-k}\left|T_{n, 1}^{\alpha, \beta} \cdot \psi_{n}\right|^{k} \\
& \quad \leq \sum_{n=2}^{m+1} n^{\gamma(\delta k+k-1)-k}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \psi_{v} A_{v}^{\alpha} A_{v}^{\beta} W_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
& \quad=O(1) \sum_{n=2}^{m+1} \frac{\left|\psi_{v}\right|^{k}}{n^{(\alpha+\beta-1-\gamma(\delta+1)) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k}\left|\Delta \lambda_{v}\right|\left(W_{v}^{\alpha \beta}\right)^{k}\right\}\left\{\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& \quad=O(1) \sum_{n=2}^{m+1} \frac{\left|\psi_{v}\right|^{k}}{n^{(\alpha+\beta+1-\gamma(\delta+1)) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k}\left|B_{v}\right|\left(W_{v}^{\alpha, \beta}\right)^{k}\right\}\left\{\sum_{v=1}^{n-1}\left|B_{v}\right|\right\}^{k-1} \\
& \quad=O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|B_{v}\right|\left(W_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{\left|\psi_{v}\right|^{k}}{n^{(\alpha+\beta+1-\gamma(\delta+1)) k}} \\
& \quad=O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|B_{v}\right|\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{v}\right|^{k} \int_{0}^{\infty} \frac{d x}{x^{(\alpha+\beta+1-\gamma(\delta+1)) k}} \\
& \quad=O(1) \sum_{v=1}^{m}\left|B_{v}\right| v^{\gamma(\delta k+k-1)-k+1}\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{v}\right|^{k} \\
& \quad=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right)\right| \sum_{p=1}^{v} p^{\gamma(\delta k+k-1)-k}\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{v}\right|^{k} \\
& \quad+O(1) m\left|B_{m}\right| \sum_{v=1}^{m} v^{\gamma(\delta k+k-1)-k}\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{v}\right|^{k} \\
& \quad=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right) \log v+O(1) m\right| B_{m} \mid \log m
\end{aligned}
$$

$$
\begin{aligned}
&=O(1) \sum_{v-1}^{m-1} v\left|\Delta B_{v}\right| \log v+O(1) \sum_{v=1}^{m-1}\left|B_{v+1}\right| \log v+O(1) m\left|B_{m}\right| \log m \\
&=O(1) \text { as } m \rightarrow \infty \\
& \sum_{n=2}^{m+1} n^{\gamma(\delta k+k-1)-k}\left|T_{n, 2}^{\alpha, \beta} \psi_{n}\right|^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{\gamma((k+k-1)-k}\left(W_{n}^{\alpha, \beta}\right)\left|\psi_{n}\right|^{k} \\
&=O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| \sum_{v=1}^{n} v^{\gamma((k k+k-1)-k}\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{n}\right|^{k} \\
&+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} v^{\gamma((\delta k+k-1)-k}\left(W_{v}^{\alpha, \beta}\right)^{k}\left|\psi_{n}\right|^{k} \\
&=O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| \log n+O(1)\left|\lambda_{m}\right| \log m \\
&=O(1) \sum_{n=1}^{m-1}\left|B_{n}\right| \log n+O(1)\left|\lambda_{m}\right| \log m \\
&=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypothesis of the theorem and lemma 1 . This completes the proof of the theorem.

References

[1] Balci, M.; Absolute ψ-summability factors, Commun. Fac. Sci. Univ. Ank. Ser. A, Math. Stat. 29, 1980.
[2] Bari, N.K., Szeckin, S.B.; Best approximation of differential properties of two conjugate functions, Tomosk. Mat. obs 5, 1956.
[3] Bor, H.; On generalized absolute cesaro summability, Proc. Appl. Math. 2, 2009.
[4] Bor, H.; On a new application of quasi power increasing sequences, Proc. Est. Acad. Sci. 57, 2008.
[5] Borwein, D.; Theorems on some methods of summability Q.J. Math. 9, 1958.
[6] Das, G; A Tauberian theorem for absolute summability, Proc. Comb. Phlos. Soc. 67, 1970.
[7] Leincler, L; A new application of quasi power increasing sequence. Publ. Math. (Debar) 58, 2001.
[8] Mazhar, S.M.; On a generalized quasi-convex sequence and its applications, India J. Pure Appl. Math. 8, 1977.
[9] Tuncer A.N.; On generalized absolute Cesaro summability factors, Tuncer J. of Inequalities and Ap. 2012.

