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Abstract: In this paper we have established a theorem on kC |,,,,|  -summability factor, which 

gives some new results.  

 

I. Introduction 

 A positive sequence )( nb  is said to be almost increasing if there exist a positive sequence )( nc  and 

two positive constants A  and B  such that nnn BcbAc   (Bari [2]). 

A sequence )( n  is said to be of bounded variation, denoted by BVn )(  if 

 



 |<||=| 11=1= nnnnn
 . 

 A positive sequence )(= nXX  is said to be quasi- -power increasing sequence if there exist a 

constant 1),(= Xkk   such that 1 ,  mnXmXkn mn


 (Leindler [7]). 

 Let n  be a sequence of complex numbers. Let na  be a given infinite series with partial sum )( ns

. We denote by 
 ,

nz  and 
 ,

nt  the n
th

 Cesaro means of order ),(   with 1>    of the sequences 

)( ns  and )( nna  respectively (Borwein [5]).            
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The series na  is said to be summable 1 ,|,,| kC k  and 1>    (Das [6]) if  
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 The series na  is said to be summable kC |,,,,|  , 1k  1>   , 0  and   is a 

real number (Bor [4]) if  
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 The series na  is said to be summable 1> 1, ,|,|   kC k  if (Balci [1])  
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And the series na  is said to be summable | , , , , |kC      if  
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II. Known theorem 
 Tuncer has proved the following theorem  

Theorem 2.1  Let 1<0 1,  k  and   be a real number such that 1>1))(1( k   

and let the sequences )( nB  and )( n  such that )( nB  is  -quasi-monotone with  

 | | | |, 0asn n nB n      (1) 
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n n nB n


  (2) 

 is convergent. If the sequence )( ,
nW  defined by    
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 (3) 
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 then nna   is summable kC |,,,,|  .  

 

III. The main result 

  The aim of this paper is to generalize Theorem 2.1 to kC |,,,,|   summability. We shall 

prove the following theorem.  

Theorem 3.1  Let n  be the sequence of Complex numbers and let the sequence )( nB  & )( n  such that the 

conditions (1), (2), (3), (4) with  
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 are satisfied then the series nna   is summable kn C |,,,,|   .  

 

IV. Lemmas 
  We need the following lemmas for the the proof of our theorem  

Lemma 4.1  (Mazhar [9]) Under the condition on )( nB  as taken in the statement of the theorem, we have 

following  

 
(1)=log OnBn n  (6) 

 and  
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Lemma 4.2  (Bor [4]) If 1> 1,<0    and nv 1  then  
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V. Proof of the theorem 

 Let )( ,
nT  be the n

th
 ),,( C  mean of the sequence )( nnna   then we have  
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Using Abel's transformation.  
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In order to complete the proof of theorem, it is sufficient to show that  

1,2= ,<|,| ,

,

1)(

1=

rTn k

nrn

kkk

n




 

 

Whenever 1>k , we can apply Hölder's inequality with indices k  and k  , where 1=
11
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  we get that  
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 by virtue of the hypothesis of the theorem and lemma 1. This completes the proof of the theorem.  
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