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On Generalized v—|C,a,f,7,6 |, -Summability Factor
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Abstract: In this paper we have established a theorem on W—|C,a, B,y,0 |, -summability factor, which
gives some new resulls.

I. Introduction

A positive sequence (b, ) is said to be almost increasing if there exist a positive sequence (c,) and

two positive constants 4 and B suchthat Ac, <b, < Bc, (Bari[2]).
A sequence (A ) is said to be of bounded variation, denoted by (4,)eBV if
DAL EY T A A <.

A positive sequence X = (X)) is said to be quasi- o -power increasing sequence if there exist a
constant kK =k(0,X)>1 suchthat kn°X, >2m° X, ,n>m=>1 (Leindler [7)).

Let i/, be asequence of complex numbers. Let Zan be a given infinite series with partial sum (s,)

. We denote by z%” and t*” then™ Cesaro means of order (@, ) with @+ 3> —1 of the sequences
(s,) and (na ) respectively (Borwein [5]).
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where A% = O(n”ﬂ), a+pB>-1,4°7 =1,4“" =0 for n>0.
The series Zan is said to be summable |C,a, f|,, k=1 and a+ f>—1 (Das [6]) if
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The series Zan is said to be summable |C,a, B,7,0|,, k=21 a+p>-1, 620 and y isa
real number (Bor [4]) if
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The series Zan is said to be summable y—|C,a |,, k=1, >—1 if (Balci [1])
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And the series Zan is said to be summable ¥—|C,a, B,7,0|; if
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II. Known theorem
Tuncer has proved the following theorem

Theorem 2.1 Let £k >1,0<0 <a <1 and y be a real number such that (@ + f+1—-y(d+1))k>1
and let the sequences (B,) and (A,) suchthat (B,) is O -quasi-monotone with
|AA, || B, |, A4, = 0asn — 0 (1)

0
Znén logn <oo and nB, logn ()
n=1
is convergent. If the sequence (W'na’ﬂ ) defined by
wer =’ | a=1, B> -1
n | n | ﬂ (3)

W'na’ﬂ=max|tf’ﬂ |50<a<1518>_1

1<v<n (4)
satisfies the condition
m o y(F+k-1)

—— (W ") = O(log myasm —» oo
n=1 n (5)
then Zanln is summable |C,a, 3,7,0 |, .

III. The main result
The aim of this paper is to generalize Theorem 2.1 to ¥—|C,, 3,7,0 |, summability. We shall
prove the following theorem.
Theorem 3.1 Let /, be the sequence of Complex numbers and let the sequence (B,) & (A,) such that the
conditions (1), (2), (3), (4) with

m n;/(ﬂc+k—1) |y/nVana,ﬂ |k

k
n=1 n

= O(logm)asm — o
are satisfied then the series Zanln is summable ¥, —|C,a, B,7,0], .

Iv. Lemmas
We need the following lemmas for the the proof of our theorem

Lemma 4.1 (Mazhar [9]) Under the condition on (Bn) as taken in the statement of the theorem, we have
following

n B logn=0(1) ©)

and

D nlogn|AB, <o (7)
n=l
Lemma4.2 (Bor[4)If 0<a<1,>—-1 and 1<v<n then
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V. Proof of the theorem
Let (T*”) bethen™ (C,a, ) mean of the sequence (1a,A,) then we have
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Using Abel's transformation.

7F =
n
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TF =
n

1 n—1 v al B
Aa+ﬂ Z}Aﬁ’v Z;A"—PAP pap
V= p=

Aa+ﬂ ZA“ lAVﬂ va,

n—1 v
| T |< A“*ﬂ DA DA, 4 pa,
n v=1 p=1
LS atva
An v=1
Aa+ﬂ ZAV APWEP | AL | +| A, | WP

— Ta.p a,ﬁ
= Tn,l + Tn,z (say)
Since
B Bk Ak Bk a.p 1k
| T+ 157 <22 T+ 157 1)
In order to complete the proof of theorem, it is sufficient to show that

zn}/(&+k—l)—k |Ta,ﬂ,‘//n |k< 0o, = 1’2

n,r
n=1

1 1
Whenever k > 1, we can apply Holder's inequality with indices X and k', where Z + o =1 we get that
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m—1

m—1
=0(1)) v|AB, |logv+0(1)> | B, |logv+O(1)m| B, | logm
v—1 v=1

=0(l)asm — x©
Sprartiran, o3| 4, |n EE ) [y,
oS | A, | S EEE R |y
FO()| Ay, | 37D ey
= O(l)§| A4, |logn+0O(1)| 4, |logm
= O(l)ﬁ | B, |logn+O(1)| 4, |logm
= O(l)Z; m—» o0

by virtue of the hypothesis of the theorem and lemma 1. This completes the proof of the theorem.
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