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L Introduction and preliminaries
The Riemann-Liouville fractional integral I7+ and fractional derivative D7+ [2], [4] of order & > 0 are
given by (I%F)(x) = — [F L9 gy 1.1

r@)’0 (x—t)l—-a
where a € C,Re(a) > 0 and

(D&F)@) = () (157 F) (x) 1.2
where @ € C, Re(a) >0 (n=|Re(a)| + 1).
G function introduced by Lorenzo and Hartley[1],[5]

= gro—n—1 yoo__On@2D"
G,nr[a,z] =z e o P — 1.3
where (1), is the Pochhammer symbol and Re(pr — 1)

whereq,y,0€ C,Re(q > 0)andRe (y > 0),Re(qy —8) >0

pnT [

Properties of function G oy [a,z]
For p,n, @, y, 0, q, a € C, (Re (p),Re (n),Re(q),Re (oc) > 0) and n € N there hold the
following properties for the special function Gp ny [a, Z] defined in (1.3) are given by H.Nagar et al.[3]

Property-1 [%)n G,y l@.2]) = G, .0, [00.2] 1.4
Pr()perty-Z]£ G,, lo.(x-0)]G,, ,lot]ld=G,,., .. |o.x] 15
Property-3 (01:; Gy 0. c=a)]) () = G, [@.(x—a)]. (x>a) 1.6
Property-4 e (G, [w.—a)]) &) = G,y [0 (x—a)]. (x> a) 17
The fractional Integral operators Gp,r],}/,a);a+

G ww®=]c,. lo G-0lv@)d, (x>a) L8

where p, 17, ¥, @ €C, (Re(p), Re(n)>0)

IL. Boundedness of Operator (Gp,n,v,w;a+‘l’) (%)
In the following theorems we prove the boundedness on the space L(a,b) and C[a,b] of the operator
(Gpryoarw) ®) defined in (1.8).
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Theorem-1 Let p, ¥, 17, @ €C, (Re (p), Re(ﬂ) > 0) and b > a then the operator G,y .w.as is bounded
*

on L(a,b) and HGPJI,WU;HV/‘L <B || l//”1 .
Wh . - ‘(7)/“ ‘a)(b_a)Re(P)‘k

ere B = (b _ a)Re(p);/fRe(lj) z 2 2

= |C(pr+pk—n)| [Re(p) ( +k)—Re(n)] ! '
Theorem-2 Let p,7, 1, @ € C, [Re(p), Re(n) > 0] and b>a then the operator |
*
bounded on C[a, b] and” Gp,m%w;ﬁwuc <B || W”c
*

where B is given in (2.2)
Proof of Theorems-1, 2
To prove Theorem-1, we denote its left hand side by A, i.e. A, = H Gp,w’w;ﬁl// H . Now  using
the definition of operator Gp’w,w;m in (1.8) and definition of the function Gp,n’y[a), (x —t)] in (1.3) and

then on interchanging the order of integration by the Dirichlet formula we have,
b | x - EAYS
J'(x_t)py—l]—lz (7)k [a)(x t) ] l//(t)dt
jl (x— oyt et 3~ )@ (et S ) ar

A=
%=0 k!F(p;/+pk—77)
b
<
*!. = K\T(py+pk—n)

which on putting x —¢ =u takes the following form :

dx

ax > t>a, x<b;

b b—t < k
S Re(p)(y +k)—Re(r7)—1 (V)k \a)\
A4§:‘: ! > wtw D T T o s o] | 1w Ol
S | O] |0 |* h |:b" Re(0)(r + k)—Re (7)1 ] ,1>a.
=> . uRe(P O g | |y ()| de
= KT (oy+p k—f?)\!: :[ b ()

Now interpreting the inner integral using term-by-term integration and taking into account (2.2), we at
once arrive at the desired result in (2.1).

To prove Theorem-2, we know that the integral operator G, a4+ 1s bounded on L(a,b) by Theorem-1,
so it is also bounded in the space C[a,b] of continuous function g on L(a,b) with a finite norm

2] = max [g(x)]

as<x<bh

Using this concept and definition of integral operator G in (1.8) and in view of (1.3) we have for any

P11,y ,05a+
X € [a, b] and i € C[a, b] ,
Gt ) ] = J ooy | 55 et 0 o

dt
= KT (oyr+pk—n

b—a

=lwle |

o

i WREP) GrR)-Re(D1 7, ) @
~ k' T(py+pk—1)

*
The integral on the right hand side is less than or equal to B | which is defined in (2.2).
This completes the proof of Theorem-2.

III.  Compositions of the Operator (Gp,n,y,u);a+‘l’) (x) and the Inversion Formula
Let p,a,0,q9,1,7, 0, P eC, (Re (q),Re(n),Re(p),Re(a) > 0) then the following
results hold for i € L(a, b).

Result-l (G (t—a)’")(x)=T(B)G,, 4, [@.(x—a)] 3.1
Result-2 17, G, ,..v=G, . . .v=G, . 1.v 3.2
ReSUIt-3 D:+ Gp,n,;/,w;aJr I// = Gp, 77+Ll,}/,(1.); a+ !// 33

holds for any continuous function e C [a, b] .
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Result 4 Gp n,y,w,a+ Gp,q,a,(u s a+ W = Gp,)]+q,}/+0,w; a+ W 3'4
_ 7-(n+q)

Resut-s G, .G, . v=I1""y 3.5

Result-6 Let G, ... isinvertible in the space L(a, b) and for y € L(a, b),

(Gp,n,y,a} a+l//)( ) :f(.X), Cl<XSb 3.6

Then 1[G,y |1} (6) = DG ) () 37

Proof of (3.1) To prove the result in (3.1), we denote its left hand side byA; i.e.
-1
AS = (Gp,n,y,a);a+ (t_a) ) (X)

Now using the definition of operator in (1.8) we have

A, ijw (x=0)](t—a) dr

with the help of deﬁnition in (1.3) and then changing the order of integration and summation we have

A, z I (t—a)’" (x—2)?7" """ at

pr p7+pn 77)"'

Evaluating the inner integral with the help of beta integral we have,

Ay =T(8)(x—a)7 """ Zjl - g[fo 7[61(;; i)(;] )

On interpreting the resulting series with the help of (1.3), we at once arrive at the desired result in (3.1).

Proof of (3.2)
To prove the result in (3.2) we denote its left hand side by Ag i.e.

8= (1. Gyt )(6)

On using the definition of the operator in (1.8) and applying Dirichlet formula for x>a, we have :

pe= [ ({1216, @) w

Now on using the relation (1.6) we at once arrive at the desired result in (3.2) in accordance with the
definition of operator in (1.8). The second relation of (3.2) is proved following similar lines as above.

Proof of (3.3)
To prove the result in (3.3), we denote its left hand side by A, i.e.

A (D:+ Gp,r],;/,w; ar¥ ) (.X)

on using the definition of fractional derivative D:+ in (3.2) we have,

=[] 12 Gp) )

which in view of (3.2) takes the following form :

A7 = (%) ( Gp,n—n+a,y,a);a+l//) ()C) :

On applying the definitions in (1.8) and (1.4) we at once arrive at the desired result in (3.3) in accordance with
the definition of the operator in (1.8).

Proof of (3.4)
To prove the result in (3.4), we denote its left hand side by Ag i.e.

Ay = (Gp,m%w;ﬁ Gp,q,a,w;ml//) (x) :
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Now in view of the definition in (1.8) we have :

A, IG,W [0, (x=0)1(Gp g st ) ()

_J. { pw —t J.qua ,( —u)]l//(u)du} dt
Now on using the definition of G—functlon in (3.3) and on changing the order of integration we have,

N Y

Eo L' T(py+pl—n)T(po+ pl,—q)

[ AR (T LT dt} w () du.

Now on evaluating the inner integral with the help of beta-integral we have

t 0 L+l _ ply+o)tp (Li+1)-(n+q)-1
. I{ 5 ), )" (=) }W)du,

a | h.1,=0 ll!lz!r[9(7"‘0_)"',0(11"'12)_(774“1)]

_ j‘ (x— u)p(rﬂf) (n+a)- 1|:Z (y +o) ( (x— ”)p)[ j|l//(u) du

= NT[pp+o)+pl—(7+q)]

Now on interpreting the resulting series with the help of (3.2) and then in view of (1.8), we at once
arrive at the desired result in (3.4).

Proof of (3.5)
To prove the result in (3.5), we denote its left hand side by Ay i.e.

A9 = (Gp,n,y,w;m Gp,qf%w;wl//) (x)

Now in view of the definition in (1.8) we have :

A =[Gy 0. c=01(Gy i) ()

—f|: p,”, @, (x—1)] J-qu - (t—u)]l//(u)du:|
Now on using the definition of G- functlon in (1.3) and on changing the order of integration we have

aol { s (), (7, ()"

Vo WL T(py+pli—n) T(p(=7)+plL—q)

) et dt} v () du.

Now on evaluating the inner integral with the help of beta-integral we have

(7/)1, ( )2 ( )I‘HZ (x_u)p(/ﬁrlz)* (n+q)-1
Ag_J‘L;o ll!lzlr[ ([1+12)_(77+q)] j|l//(u)du

which on making use of the series identify we have :

A= oy [ =) )

Now with the help of the definition of the operator in (1.1), we at once arrive at the desired result in (3.5).

a

Proof of (3.6,3.7)
To prove the result in (3.7), let (Gp’m},’w cat¥ ) (X) = f(X) .

Now on operating G iy, :a+ ON DOth the sides we have
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(Gp,q;;/,a);zﬁ Gp,f],}/,&);a+w ) (x) = (Gp,q,f}/, w;a+ f ) (x)

which in view of (3.5) gives (I;(r'”q)l//) (x) = (Gp,qry’w;m f) (x) .

Now on operating D{;(rmq)

(Dimq)]imq)l//)(x) _ (D;qu) Gp,q;y,w;mf) (x)

W (x) = (D;£q+q) Gp,q,*}/,w; a+ f) (x)
which is the result in (3.7).

Now let ([G 17,0 5 ak ]Af)(x) = (D;EUW) Gp,q,—%w;a+ f) ()C)

on operating G, .. both the sides, we have

([Gp,n,y,m;a+]_] [GPJ]J’JUQ ‘H']f) (x):(Da_J(rn+q)GP,CIa*7»W;“+ GP,U»%w;a*f) (x)

which in view of (3.5) gives

([Gpsﬂs}”W;a*’]il [Gp,n,y,w;a+]f) (x) = D(;(r’?*ﬂ I;£”+q) f(‘x)
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on both the sides it gives :
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