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 Abstract: In this paper, we attempt to present a short argument, different from that of the original proofs by 

that of Hawking, for a theorem stated that no closed timelike curves can exist. In a later paper, we apply this to 

quantum gravity and relate the curvature of spacetime to this theorem. Also, we present this paper as a 

preliminary introduction to the complete argument of this, and we also provide a preliminary notion of the 

concepts which will be narrated in the later papers. We also use this as a starting basis for a true theory of 
everything for a theory of everything. We use the notation of [1] and of [2]. 
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I. The elimination of Closed Timelike Curves in Loop Quantum Gravity 
Theorem : There exists no closed timelike curve in the physical world. 

To prove this, we introduce spacetime as (ℳ, 𝑔
(4)

) where we can define ℳ as a four dimensional 

manifold and 𝑔
(4)

 as a Lorentzian metric on it. In the third part, we introduce a ADM 3 + 1 split of the four 

dimensional (ℳ, 𝑔
(4)

). 

II. ADM 3+1 split of classical four dimensional (𝓜, 𝒈
(𝟒)

)  
In this section, we mainly reconstruct the topics in [1]. 

To do a 3+1 split of classical four dimensional (ℳ, 𝑔
(4)

), we need (ℳ, 𝑔
(4)

) to be homeomorphic to 

the direct product space formed by ℝ × 𝛴, where 𝛴 is a three-manifold representing space and 𝑡 ∈ ℝ represents 

time. (ℳ, 𝑔
(4)

) needs to be globally hyperbolic, and we assume causality, that is, no closed timelike curves 

(CTC) exist. We define closed timelike curves in the following manner. 

A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔
(4)

), the following 

equations satisfied: 

 𝜋: 𝑆1 → (ℳ, 𝑔
(4)

) 1)  

 

And in a shifted coordinate system, 𝔎1, we have 

 𝑔(𝜋𝔎1 , 𝜋𝔎1) < 0 2)  
 

This allows us to state that the time function is regular. A particular slicing of spacetime, though, 

would be a matter of choice. A choice of slicing is equivalent to the choice of a regular function $f$ (i.e., a 

scalar field on (ℳ, 𝑔
(4)

)) for which 𝜕𝜇 𝑡 is timelike. 

 

Suppose there exist two spaces, so that there is a mapping of some sort between them, defined as 

Proposition 1: 𝑓 on 𝒜 maps to ℬ. Then, it could be said that {𝑓} is a space itself, multiplied (i.e., it 

forms a product space with) by 𝒜 to yield ℬ. Then we could say that {𝑓} = ℬ/𝒜. 
I.e., if 

 𝑓:𝒜 → ℬ 3)  
 

Then we have 

 {𝑓} = ℬ/𝒜 4)  
 

Proof: If 𝑓 is defined as 

 𝑓:𝒜 → ℬ 5)  
 

Then we need ℬ and 𝒜 to have their points as discrete eigenvalues of some operator corresponding to 

each space (we wish to call this the soperator). Thus, as 𝑓 should have eigenvalues corresponding to each 

soperator, we need 𝑓 to eigenvalues which exist in both the spaces, which is obviously the union of the two, 

which is given by 
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 {𝑓} = ℬ/𝒜 6)  
 ∎ 

The regular values of 𝑓 then form 3-manifolds, our 𝛴, defined by 𝛴(𝑡0) = 𝑓−1(𝑡0). Using the 

submersion theorem, we can find a local coordinate system {𝑥𝜇 } over the open set 𝑈, where ∀ 𝑝 ∈ 𝑈, 𝑓(𝑝) =
𝑓(𝑥0(𝑝), 𝑥1 (𝑝), 𝑥2(𝑝), 𝑥3(𝑝)) = 𝑥0(𝑝). 

The 1-form 𝑑𝑓 is then 𝑑𝑥0 and the intrinsic coordinates of each hypersurface are given by 𝑥1 , 𝑥2 , 𝑥3. 

Thus the vectors 𝜕𝛼 : =
𝜕

𝜕𝑥𝑎  span the target space to each hypersurface. We can express the components of each 

vector field in terms of a general basis {𝑦𝛼} as 𝑒𝑣 : 

 
𝜕

𝜕𝑥𝑣 
=

𝜕𝑥𝑎

𝜕𝑥𝑣 

𝜕

𝑦𝛼
=: 𝑒𝑣 

𝛼𝜕𝛼  
7)  

 

Similar to [1], √4 means the metric dual to 𝑑𝑥0 . We have a vector field 

 (𝑑𝑥0)√
4
: = 𝑔

(4)
(𝑑𝑥0 ,∙) = ( 𝑔

(4)
)0𝑣𝜕𝑣 8)  

 

Thus the vector field with components 𝜕𝑣𝑓 or ( 𝑔
(4)

)0𝑣 is a normal to the hypersurface. If 𝑛𝜇  is the unit 

normal to 𝛴, then on decomposing 𝜕0 into its components parallel to the hypersurface 𝑁𝜇  and orthogonal to is 

𝑁𝑛𝜇 , we obtain 

 𝜕0 = 𝑁𝑛 + 𝑁    9)  
 

Since we have 𝑑𝑥0(𝜕0) = 1, we see that we must have 

 −𝑁2 = ( 𝑔
(4)

)00 = −||𝑑𝑥0||2 10)  

 

III. Loop Part 
We first look at Definition 1.0.2. So, we can define elements of a curve as 

Definition : If there exists a curve 𝛾, then the elements of it are its 𝑥, 𝑦, 𝑧 and/or 𝑡 components, given 

by 𝛾𝑎 , or by 𝛾𝑎 . 

So, using this convention, we have a new definition of a closed timelike curve: 

Definition : A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔
(4)

), the 

following equations satisfied: 

 𝜋: 𝑆1 → (ℳ, 𝑔
(4)

) 11)  

 

And in a shifted coordinate system, 𝔎1, we have 

 ( 𝑔
(4)

)𝑎𝑏  𝜋
𝔎1 𝑎 ,  𝜋𝔎1 𝑏 < 0 12)  

 

We then define a set of all possible timelike curves defined by 𝜋: 𝑆1 → (ℳ, 𝑔
(4)

). This set we call the 

timelike loop space of (ℳ, 𝑔
(4)

) and call it 𝛺(ℳ, 𝑔
(4)

). Now, if we consider our coordinate system change, to 

the system 𝔎1, we would have the following: 

 𝛺 ℳ, 𝑔
 4  = ∅ 13)  

 

Therefore, we may define the coordinate shift such that the causal structure makes the timelike loops 

(that is, curves) to vanish and therefore make 𝛺 ℳ, 𝑔
 4  = ∅. The 𝜋𝔎1 may lie on ℝ or 𝛴. If 𝜋𝔎1 lies on 𝛴, 

then we need 𝜋𝔎1 to lie on the regular values of 𝑓. 

But the introduction of a metric in  ℳ, 𝑔
 4   induces a metric on 𝛴, which in turn causes a causal 

structure to be formed. Since spacetime is not necessarily Ricci flat, 𝜋𝔎1 must, to introduce a causal structure on  

 ℳ, 𝑔
 4  , exist on ℝ. Then we may define ℝ as having no causal structure. The coordinate shift creates the 

closed timelike curves on the ℝ, and therefore a restriction of vectors tangential to ℝ must not exist. This is 

wrong. 

But ℝ is Riemannian, therefore 𝜋𝔎1 must not exist. That is, slicing causing closed timelike curves do 

not exist. This means that all slicings of ℝ × 𝛴 have no closed timelike curves in them, even on coordinate 

shifts, and therefore  ℳ, 𝑔
 4   is globally hyperbolic, ∀ ℳ, 𝑔

 4   and 𝑔
 4 

. This is the proof of the proposition. 

∎ 
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IV. Introduction to the preliminaries of Future Papers 
Define 𝑡𝛼 = 𝑁𝑛𝛼 + 𝑁𝑎𝑒𝑎

𝛼  as the components of 𝜕0. We then obtain from [1], the following equation: 

 𝐷(𝑎𝑡𝑏) = 𝑛(𝛼𝑁;𝛽) + 𝑁𝐷(𝛽  𝑛𝛼) + 𝐷(𝛼𝑁𝛽) 14)  
 

We then obtain the extrinsic curvature as 

 𝐾𝑎𝑏 =
1

2𝑁
(𝑔 𝑎𝑏 − 2𝑁(𝑎;𝑏)) 

15)  

 

Now we use the Ashtekar approach. The canonical variables (these are 𝑥𝜇 ) are components of the 

inverse 3-metric 𝑔𝑎𝑏  intrinsic to 𝛴 and the components of the spin connection ∇ on 𝛴. The spin connection ∇ 

defines a bundle connection with base space 𝛴 and the spin space 𝕊. ∇ is then given by 

 ∇= ∇intrinsic + 𝑖𝑲 16)  
 

Defining a particular 𝜇 = 0 would lead to 𝑓 being a component of 𝑔𝑎𝑏  intrinsic to 𝛴 and the 

components of the spin connection ∇ on 𝛴. For the 3 + 1 split, we say that  ℳ, 𝑔
 4  = 𝛴 × ℝ, and in the spin 

connections's space, 𝛴 × 𝕊. We now define 𝛴 × 𝕊 as a five-dimensional space  𝒟, 𝑔
 5  , with a 5-metric. 

We may perform a 4 + 1 split of  𝒟, 𝑔
 5  , by stating that 𝕊 would have a 1 + 1 split on it, so we can 

define 𝕊 = ℝ × 𝒬. What is 𝒬? We can define the points of 𝒬 as below: 

Definition : 𝒬 is defined as ∀𝑝 ∈ 𝒬, 𝑝 × ℝ is a vector in 𝕊. 

Here ℝ denotes time, and 𝒬 denotes space. (We can see the reasons for this split later.) Consider the 

following equation: 

  𝒟, 𝑔
 5  = 𝛴 × ℝ × 𝒬 17)  

 

Look at the first part of the right hand side. It has 𝛴 × ℝ, which is the 3 + 1 split of gravity! So, this 

can be reformulated as 

  𝒟, 𝑔
 5  =  ℳ, 𝑔

 4  × 𝒬 18)  

 

The spin connection is basically a functional derivative‟s component, that is, 

 𝑔𝜇𝑣 = 𝑖ℏ
𝛿

𝛿∇𝜇𝑣

 
19)  

 

The metric made is 𝑔𝜇𝑣 = 𝑔
 4 𝜇𝑣 + 𝑛𝜇𝑛𝑣. Therefore, we have a refined equation, that is 

 𝑔
 4 𝜇𝑣 + 𝑛𝜇𝑛𝑣 = 𝑖ℏ

𝛿

𝛿∇𝜇𝑣

 
20)  

For uncontrollable infinities to vanish, we need ∇𝜇𝑣≠ 0, else the 3-dimensional metric would yield 

infinite distances between any two (even infinitesimally close) points as ∞. 

Now we ask ourselves a question. In the above statement, why was “3-dimensional metric” mentioned? 

Why not “the metric” or “4-dimensional metric”? 

To answer this, look at the fact that 𝑔𝜇𝑣 = 𝑔
 4 𝜇𝑣 + 𝑛𝜇𝑛𝑣. We need the 4-metric 𝑔

 4 
 to be finite, so we 

can introduce 𝑛𝜇𝑛𝑣 = −∞ + 𝛿𝑣
𝜇
. This then yields a finite answer for the 4-metric 𝑔

 4 
, but what about the effect 

on 𝛴? Look at how we had defined 𝑛𝜇  – “𝑛𝜇  is the unit normal to 𝛴…”. The unit normal cannot be infinity, so 
saying that the 3-dimensional metric would yield infinite distances between any two (even infinitesimally close) 

points as ∞ is equivalent to saying that the 4-dimensional metric would yield infinite distances between any two 

(even infinitesimally close) points as ∞. 

In the classical limit, 𝑔
 4 𝜇𝑣 + 𝑛𝜇𝑛𝑣 = 𝑖ℏ

𝛿

𝛿∇𝜇𝑣
 becomes 𝑔

 4 𝜇𝑣 = −𝑛𝜇𝑛𝑣 as we estimate limℏ→0 ℏ, and 

therefore we need −1 = 𝑔
 4 

𝜇𝑣𝑛
𝜇𝑛𝑣, so that 𝑛𝜇  and 𝑛𝑣  are negatively normalized to each other. 

The space of the spin connection is  ℳ, 𝑔
 4  × 𝒬, and we have a Dirac spinorial wavefunction, 

defined as 𝛹 =  𝛼𝐴 , 𝛽𝐴′ . ∇ tells us how to carry the (two) spinor 𝛼𝐴, (and also 𝛽𝐴′ ), parallel to itself with respect 

to the  ℳ, 𝑔
 4  ‟s metric connection along some curve 𝛿 that lies on 𝛴, defined as 

Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following 

equations satisfied: 𝛿: 𝑆1 → 𝛴. 

Since  ℳ, 𝑔
 4   is globally hyperbolic, from the above discussion, and ℝ is flat, 𝛴 may be considered 

to be the global hyperbolicity “generator”. We are using the 𝛿 on a globally hyperbolic surface, and the curve 

then becomes a timelike loop, but with restriction that if 
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Proposition 2: If 𝛿: 𝑆1 → 𝛴 then we should have 𝛿: 𝑆1 × ℝ → 𝛴 × ℝ so that 𝛿 ≠ 𝜋𝔎1, i.e., 𝛿 is not a 
closed timelike curve. 

 Define the connection now as ∇ tells us how to carry the two spinor 𝛹 parallel to itself with respect to 

the  ℳ, 𝑔
 4  's metric connection along some curve 𝛿 that lies on 𝛴, defined as 

Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following 

equation satisfied 𝛿: 𝑆1 → 𝛴. 

This new definition allows us to say that ∇ causes a linear transformation of the spin space ℝ × 𝒬, by a 

matrix 𝔗𝐴
𝐵 and 𝔗𝐴

𝐵, when acted on ℝ may/may not yield ℝ, but the space 𝒬 is for sure transformed. 

As we split  𝒟, 𝑔
 5  , we can say that 𝔗𝐴

𝐵 on ℝ would transform, but 𝔗𝐴
𝐵 on 𝒬 would yield 𝒬. 𝔗𝐴

𝐵 then 

operates only on  ℳ, 𝑔
 4  ‟s ℝ components. The elements of 𝔗𝐴

𝐵 are determined by some sort of basis 𝛽 in 𝛴. 

We need the basis 𝛽 to be extended to  ℳ, 𝑔
 4  , so we do a direct product by ℝ on  ℳ, 𝑔

 4  × 𝒬 and 

 ℳ, 𝑔
 4  , and retrieve back the full spin space (with the 1 + 1 split). This ensures that the 𝔗𝐴

𝐵 are determined 

by some sort of basis 𝔅 in  ℳ, 𝑔
 4  . This allows wavefunctions to be existent as functions of time, so that 

𝑖 ℏ
𝜕

𝜕𝑡
  𝛹   is not necessarily 0. 

See that if the direct product by ℝ had not been done, we would have had a vanishing Hamiltonian and 
therefore a Ricci flat spacetime, that is Minkowski space. It must be noted that after the direct product, we end 

up with a 6-dimensional spin connection space and a 5-dimensional spacetime, not necessarily Ricci flat. How 

are we to explain the sudden introduction of mass into the spacetime picture by doing a direct product? This we 

will try examining later. We have already split our 5-dimensional spacetime  ℳ, 𝑔
 5   as a (3 +  1)  +  1 split, 

as we have  ℳ, 𝑔
 5  =  𝛴 × ℝ × ℝ. ℝ × ℝ, the direct product, is the 2-dimensional ℝ2. We then have the 

two main equations  𝒟, 𝑔
 6  = 𝛴 × ℝ2 × 𝒬  and  ℳ, 𝑔

 5  =  𝛴 × ℝ × ℝ. The 6-metric 𝑔
 6 𝜇𝑣

 is defined 

as 𝑔
 6 𝜇𝑣

+ 𝑛 𝜇 𝑛 𝑣 = 𝑖 ℏ
𝛿

𝛿 ∇𝜇𝑣
. We need 𝜇 , 𝑣  to run over 0, … ,5. A problem here is that ∇𝜇𝑣  wanders away 

from its original background space – if 𝜇 , 𝑣  is to run over 0, … ,5, then ∇𝜇𝑣  would exist on  𝒟, 𝑔
 6  , and it has 

obviously deviated from its original background space 𝛴 . So, for ∇𝜇𝑣 , we define different indices 𝑕, 𝑘  which 

run over 0, … ,2, so the above equation becomes 𝑔
 6 𝜇𝑣

+ 𝑛 𝜇 𝑛 𝑣 = 𝑖 ℏ
𝛿

𝛿 ∇𝑕𝑘
. 

Our − + + + metric is formed by restricting the Killing form of the group 𝒢 's (of  ℳ, 𝑔
 6  ) Lie 

algebra 𝔤  to its Cartan subalgebra, say 𝔤 0. If the (Killing form) field equations vanish, a topological field theory 

(TFT)  can be created on  ℳ,∙ , and so even the ∇𝑕𝑘  vanishes. If we do the Chas-Sullivan timelike loop product 

of any two timelike loops ∇𝑕𝑘
𝑎  and ∇𝑕𝑘

𝑏 , we need to have the Killing form of the Lie group to be restrictable 
to its Cartan subalgebra. If the Killing form vanishes, we have a TFT and the timelike loops vanish. Now we ask 

ourselves, is it a local or global TFT? The group of  ℳ,∙  can be said to be 𝒢 𝑢 . \emph{If 𝒢 𝑢  has a locally 

different structure from the global structure of 𝒢 𝑢 , and if the local structure of 𝒢 𝑢  has a non-restrictable Killing 

form, then the TFT is local. For an Abelian 𝒢 𝑢 , the TFT vanishes, but for a non-Abelian G, the TFT may 
vanish.} 

We see that we can define the proposition in section 1 as a theorem: 

Theorem : There exists no closed timelike curve in the physical world. 

It seems that the above can also be stated alternatively, as a corollary, as below: 

Corollary : There exists no map between any two charts on $(\mathcal{M}, ^{(4)}g)$ such that 

causality is violated in any of them, i.e.,t here exists no map between any two charts on $(\mathcal{M}, 

^{(4)}g)$ such that closed timelike structures (here proved only for curves) is violated in any of them. 

Proof : Basically, the main concept we assume is that causality exists. If that exists, then it should hold 

in all coordinate systems. According to the definition of closed timelike curves, if there exists a map between 

the two coordinate systems, say ℧:𝔎 → 𝔎1, and the above theorem is false, then 𝛺 ℳ, 𝑔
 4  = ∅. ∎ 

If we look at proposition 1, then if we look at the transition map between two charts, 𝔎 and 𝔎1, and 

compare it with the above then we see that we can propose: 

Proposition 3: The transition map between two charts, 𝔎 and 𝔎1, does not exist. 

Proof :We have, if 𝔎/𝔎1 exists (as it should), a map ℧:𝔎 → 𝔎1. Then, from proposition 1, 𝔎/𝔎1 =
{℧}. As {℧} does not exist, by the definition of a transition map, 𝜏 : {℧} → {℧} also cannot exist. ∎ 
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V. Conclusion 
In this paper, we have proved the theorem which states that no CTCs can exist. Also, we have a 

concept simply stated as “functions as spaces”. This has many great implications, as can be exhibited: In future 

papers, we see that the symmetry group of the quantum universe during the so-called „quantum super-bounce‟ of 

super-LQC must have been 𝑆𝑈 (14) (due to complex reasons explained in those papers). We can easily perform 

a breaking as 𝑆𝑈 (14) → 𝑆𝑈 (5) × 𝑆𝑈 (9), where 𝑆𝑈 (9) is the symmetry group of loop quantum supergravity 

(due to complex reasons explained in those papers) and 𝑆𝑈 (5) is the Georgi-Glashow model. We obtain 

gravity, QCD, and the Electroweak force. By this method, we can obtain quantum electrodynamics as a unitary 

representation of the 𝑆𝑈 (14) group through the concept “functions as spaces”. 
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