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Generalizing the theorem of Kransniqi [On absolute weighted mean summability of orthogonal series, Slecuk J. 

Appl. Math. Vol. 12 (2011) pp 63-70], we have proved the following theorem which gives some interesting and 

new results. 
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Abstract: In this paper we prove the theorems on absolute weighted mean | , |kA  -summability of orthogonal 

series. These theorems are generalize results of Kransniqi [1]. 
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I. Introduction 
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,( )n vA a  be a normal matrix, 

that is lower-semi matrix with non-zero entries. By ( )nA s  we denote the A -transform of the sequence 

{ }ns s , i.e. 
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 In the special case when A  is a generalized Nörlund matrix | A |k summability is the same as 

| , , | kN p q  summability (Sarigöl [5]). 

By a generalized Nörlund matrix we mean one such that  
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where for  given sequences of positive real constant { }np p  and { }nq q , the convolution ( )n nR p q   is 

defined by  
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where ( * ) 0np q   for all n , the generalized Nörlund transform of the sequence { }ns  is the sequence 

,{ ( )}p q

nt s  defined by 
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and | |kA  summability reduces to the following definition: 

The infinite series 
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and we write  
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Let { ( )}x  be an orthonormal system defined in the interval ( , )a b . We assume that ( )f x  belongs to 

2 ( , )L a b  and  

 
0

( ) ~ ( )n n

n

f z c f x




   (1.1) 

where ( ) ( ) , 0,1,2...
b

n n
a

c f x x dx n    

we write 
1 0, 0,j n

n n v v n n n

v j

R p q R R R








     

and 
0

( *1)n n v

v

P p p




   and 
0

(1* )n n v

v

Q q q




    

Regarding to 1| , , | | , , |N p q N p q , summability of orthogonal series (1.1) the following two theorems are 

proved. 

Theorem 1.1 (Okuyama [3]) If the series 
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then the orthogonal series ( )n nc x  is summable | , , |N p q  almost every where. 

Theorem 1.2 (Okuyama [3]) Let { ( )}n  be a positive sequence such that { (n) / n}  is a non increasing 

sequence and the series 
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 The main purpose of this paper is studying of the | , |kA   summability of the orthogonal series (1.1), 

for 1 2k  . Before starting the main result we introduce some further notations. 
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Given a normal matrix 
nvA a , we associates two lower semi matrices ,n vA a  and ,

ˆ ˆ
n vA a  as follows 
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 It ma be noted that A  and Â  are the well-known matrices of series-to-sequence and series-to-series 
transformations resp. 

Throughout this paper we denote by Ka  constant that depends only on k  and may be different in different 

relations. 

 

II. Main Results 
 We prove the following theorems: 

Theorem 2.1 If the series 
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Converges for 1 2k  , then the orthogonal series 
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Proof. For the matrix transform (s)(x)nA  of the partial sums of the orthogonal series 
0

( )n n

n

c x




  we have 

 

0

,

0 0

0 0

,

0

( )( ) ( )

( )

( )

( )

n

n nv v

v

n v

n v j n

v j

n n

j n nv

j v

n

n j j n

j

A s x a s x

a c x

c x a

a c x









 

 













 

 



  

where 
0

( )
v

j n

j

c x


  is the partial sum of order v  of the series (1.1) 
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Using the Hölder’s inequality and orthogonality to the latter equality we have 
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Thus the series 

 
1

1

| | | ( )( ) |
b

k k k

nn n
a

n

a A s x dx


 



    

 

/2
2

2 2
2 2

,

1 0

ˆ| | | | | |

k
n

k
nn n j j

n j

k a a c
  

 

 
  

 
    (2.1) 

Converges by the assumption. 

From this fact and since the function | ( )( ) |nA s x  are non negative and by Lemma of Beppo-Levi [2] we have  
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Converges almost every where. 
This completes the proof of theorem. 

If we put 
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then the following theorem holds true. 
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Proof. Applying Hölder’s inequality to inequality (2.1) we get 
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which is finite by virtue of the hypothesis of the theorem and completes the proof of the theorem. 
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