Pythagorean Triangle and Special Pyramidal Numbers

M. A. Gopalan¹, V. Sangeetha², Manju Somanath³

¹ Department of Mathematics, Srimathi Indira Gandhi College, Trichy-2, India
²,³ Department of Mathematics, National College, Trichy-1, India

Abstract: Patterns of Pythagorean triangle, where, in each of which either a leg or the hypotenuse is a pentagonal pyramidal number and centered hexagonal pyramidal number, in turn are presented.

Keywords: Pythagorean triangles, pentagonal pyramidal, centered hexagonal pyramidal.

I Introduction

The method of obtaining three non-zero integers α, β and γ under certain relations satisfying the equation \(\alpha^2 + \beta^2 = \gamma^2 \) has been a matter of interest to various mathematicians [1,2,3]. In [4-12], special Pythagorean problems are studied. In this communication, we present yet another interesting Pythagorean problem. That is, we search for patterns of Pythagorean triangles where in each of which, either a leg or the hypotenuse is represented by a pentagonal pyramidal number and centered hexagonal pyramidal number, in turn.

II Notation

\(P_n^m \) - m-gonal pyramidal number of rank n
\(CP_n^m \) - centered m-gonal pyramidal number of rank n
\(t_{m,n} \) - polygonal number of rank n.

III Method of Analysis

Let \((m,n,k)\) represent a triple of non-zero distinct positive integers such that \(m = (k+1)n \)

Let \(P(\alpha, \beta, \gamma) \) be the Pythagorean triangle whose generators are \(mn \). Consider

\[\alpha = 2mn; \quad \beta = m^2 - n^2; \quad \gamma = m^2 + n^2. \]

It is observed that, for suitable choices of \(n \), either a leg or hypotenuse of the Pythagorean triangle \(P \) is represented by a pentagonal pyramidal number and centered hexagonal pyramidal number, in turn. Different choices of \(n \) along with the corresponding sides of the Pythagorean triangle are illustrated below.

Choice 3.1

Let \(n = 4k + 3 \).

The corresponding sides of the Pythagorean triangle are

\[\alpha = 32k^3 + 80k^2 + 66k + 18 \]
\[\beta = 16k^4 + 56k^3 + 57k^2 + 18k \]
\[\gamma = 16k^4 + 56k^3 + 89k^2 + 66k + 18 \]

Note that \(\alpha = P_n^5 \)

Choice 3.2

Let \(n = 2k^2 + 4k + 3 \)

The corresponding sides of the Pythagorean triangle are

\[\alpha = 8k^5 + 40k^4 + 88k^3 + 104k^2 + 66k + 18 \]
\[\beta = 4k^6 + 24k^5 + 60k^4 + 80k^3 + 57k^2 + 18k \]
\[\gamma = 4k^6 + 24k^5 + 68k^4 + 112k^3 + 113k^2 + 66k + 18 \]

Note that \(\gamma = P_n^5 \)

Note

It is worth mentioning here that, for the following two choices of \(m,n \) given by (i) \(n = 4k, m = k(n + 1) \) and (ii) \(n = 2k^3 - 3, m = kn \) the sides \(\alpha \) and \(\beta \) represent \(P_n^5 \) respectively.

Choice 3.3

Let \(n = 2(k + 1) \)

The corresponding sides of the Pythagorean triangle are

\[\alpha = 8k^3 + 24k^2 + 24k + 8 \]
\[\beta = 4k^4 + 16k^3 + 20k^2 + 8k \]
\[\gamma = 4k^4 + 16k^3 + 28k^2 + 24k + 8 \]

Note that \(\alpha = CP_n^5 \)
Choice 3.4
Let \(n = k(k + 2) \)
The corresponding sides of the Pythagorean triangle are
\[
\alpha = 2k^5 + 10k^4 + 16k^3 + 8k^2 \\
\beta = k^6 + 6k^5 + 12k^4 + 8k^3 \\
\gamma = k^6 + 6k^5 + 14k^4 + 16k^3 + 8k^2
\]
Note that \(\beta = CP_n^6 \)

Choice 3.5
Let \(n = k^2 + 2k + 2 \)
The corresponding sides of the Pythagorean triangle are
\[
\alpha = 2k^5 + 10k^4 + 24k^3 + 32k^2 + 24k + 8 \\
\beta = k^6 + 6k^5 + 16k^4 + 24k^3 + 20k^2 + 8k \\
\gamma = k^6 + 6k^5 + 18k^4 + 32k^3 + 36k^2 + 24k + 8
\]
Note that \(\gamma = CP_n^6 \).

Properties
(1) \(3(\gamma - \beta) \) is a Nasty Number.
(2) \(\frac{\beta}{\gamma} \) is a biquadratic integer.
(3) \(\frac{\alpha}{\beta} \) is a perfect square.
(4) \(\frac{\gamma}{\beta} = \frac{CP_{n+1}^3}{k^2 + 2k + 3} \)
(5) \(\alpha \) is a perfect square when \(k = 2p^2 - 1 \)
(6) \(6(\gamma - \alpha) \) is a Nasty number.
(7) \(\frac{\gamma}{\alpha} \) is a biquadratic integer.
(8) \(\frac{3\gamma}{\alpha} = \frac{CP_{n+1}^3}{k^2} \)

IV Conclusion
One may search for other patterns of Pythagorean triangles, where, in each of which either a leg or the hypotenuse is represented by other polygonal and pyramidal numbers.

References
[13]. M.A.Gopalan, V.Sangeetha and Manju Somanath, Pythagorean Triangle and Pentagonal Number, Accepted for publication in Cayley Journal of Mathematics.