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number reveals those points Z for which the functions (Zn 1(2 (Zn 1(2 )
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Riemann zeta funtion .

by direct analysis we can find zeroes of

nl(z)

1. Introduction

1.1 Riemann hypothesis
Theorem 1 (Riemann hypothesis) All non-trival zeroes of Riemann zeta function defined by

| 1
§(Z2)= Z _,—7 Where Z is a complex number lie on the line Z = (E +1iy).
"n

1.2 1

1
since (3,37 2—2[<an ot

; 1

(2 1)(; 5

Consequently, (Zn | (2 (Z
Implies,[(27)* - (2)27) +21Q

], Therefore,

nl(z)

)

nl(2)

=0 Implies,either (Z

n= 1(2 ) n= 1(2 ) or
[(27)* =(2)(2”)+2]=0 or Both. Let us assume first (Z 2 ) =1+£i Implies,
8k 1) (7))
27 = \/5(6) 4 , Where, k , is any positive integer including zero. Implies, Z lie on the line
" .
=l+[w] When,any point Z, liesonthe line Z = [w] It follows from
2 (4In2) 2 (4In2)
eq(1.2.1.1),
20z)=1+i
( )= ()X )
Z:(2 —1)( ;(2 )z 1)
8k —1)(7)(?)

Similarly,If any point Z, lies on the line Z = 2 +[ | Then,it follows from eq(1.2.1.1),

(41n2)
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The proof of Riemann Hypothesis
20z)=1-i
Consequently,
( +i( )
; 1)( Z‘ (2n )(
But,We want something more.We w1sh to show that
1.3 2
If any point

2
lies on the line

_ 1 Bk+D)()0)
2= (41n2) D

and another point
Z
lies on the line
1 8k —1)(7)(i
_ (L B0,
2 " (4l2)
w 1 o 1
Z A T Z A T O ,where O tends to zero.
"~ (2n-1)z) " (2n-1)z,)

But before showing this, let us show that four common values
of all infinitely many valued function

(e )[ (@)(O)(In p)

s ———— ] are (—1),] and £i where P isany odd prime taken arbitrarily
Since

1 1
+_
(e -1 2
1 (e)’+1)
2 ()’—1
_ (@

cot—zt
2 ( )

Then,modulas of

"+( )Zt +4n ( )2

(In p)(P)(0)
If t =2(7)(k)(E) +
(7)(k)(@) 12
where k is any positive integerand k& € (0,1,2

),

1
then as k tends to ©0,it follows,
() 2(z) k)i + PO

In2 I-
(& 2wk + OO @

In2
Since, (€)*™*" =1 So it follows from eqution1.3.2.1 that one of the values of

())(O)(In p)
(e) In2

=0 Consequently,
1

=-1 )

Obviously then,chooseing suitable & we can arrive at the values £7 and 1. Since the matter plays a key role
in what follows, an example will not be out of place here.Let us consider the many valued function
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The proof of Riemann Hypothesis

(In3)(7)(@)

(e) 4In2 Taking the value of (In3) and (In2) upto 9 decimal and using De Moivre’s Theorem
we find

(In3)(7)(0)

(e) 4In2 -

(1.098612289)(7)(i)
¢) (4)(0.69314718)

(1.584962502)(7)(i)

() 4 =
(2-0.415037498)(7)(i)
() 4 =
(103759374)(1)(—i)
(i)(e) 1000000000 _
(2n+103759374)(z)(—i)
(i)(e) 1000000000

Obviously then,when n =448120313,
(In 3)(7)(@)
(@ 42 =)
When #=198120313 ,then
(In3)(7)(¥)
(e) 4n2
when 7 =948120313 ,then
(In3)(7)(¥)
(e) 4In2
when 7= 698120313 ,then
(In 3)(7)(?)
(e) 4n2  — 4

(

=i

(In P)(7)(7)
41n2

Actually,among infinitely many values,these four values are common to all (e) , where p isany

odd prime taken arbitrarily. Now since,

1 )2
N R
1 - z
p
o 1
So,the function Z 71W may be regarded as the rational function of two functions y/(z) and @(z)
n= n—
ie
i 1 _y@

= 2n=1)" §(2)

where, z = x+1y, p, denotes the 7 th prime and
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y(z) =
(¥ X (e)In pr)M(@)
n=2

and

¢(z) =
(¥ X (e)In P -1
n=2

So, it is not necessary that the branch of multivalued functions ¥/(z) and @(z) have to be same all the time,In

| A
other words the value of (e)( 12 XD

(z)()(In p)
(0 *M2 =) ©
and if p, denotes the 7 th prime then

may be different for 1/(z) and ¢(z), Ifall

=ﬁ ] (7
2 (14 +i )
Jp.
and
(i 1 Y :ﬁ 1
i (2n—=1)'z,) =2 (1- 12 )
P’
=ﬁ ] (®)
2 (1- +i )
Jr.
Obviously then,
Yo =[S
n=1 (2]’1—1)(21) n=1 (Zn_l)(z2)
1 ©
= Jas by
Since,

— ; (10)
"2 (14+—)

n

www.iosrjournals.org 17 | Page
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d 1
<[1— ()
IS
by
= ﬁ 1 (12)
n=2 (1 _ iz
n=1 27’[ - 1)2
()’
= 14
3 (14)
And
a 1 Inn)-Y
[[—F-= ( 2) (15)
-1
P
Where Y is EULER’S CONSTANT. Obviously then, from

eqations (1.3.2,6),(1.3.2.7),(1.3.2.8),(1.3.2.11) and (1.3.2.12) it follows,

0 1 B
I:I 1
n=2 1+7

V( pn) (16)

T
2/(Inn)-Y

Consequently,when 7 tends to o0 then Inn — 0 so

T
—————— —> O, where O tends to zero.
2(nn)—Y

Therefore, from equations (1.3.2.6) and (1.3.2.13) it is clear that

amn

n=1

- 1
;(2'1—1)(22)

=0

> 1
Z 2n-1)'z)
If all
(In p)(7)()
e 4In2 - (18)

then since,

(1+) 19)

So,
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n=2 1
(1+-—)
» £ (20)
H 1
1
n=2 1+
JE
(In P)(7)(@)
Whenall e 42 —1 then dividing equation (1.3.2.12) by inequality (1.3.2.17) it follows
n=2 1 \/IF
(ln n)—Y
2

In otherwords,

e
" 2n-1)(z,)

(In p)(7)(@)
4In2

oo 1

But if in this case,the value of (e) forthe function ¥/ (z) be taken as +1 for the points

Z o Z, ad -1 for the function ¢(z),then it can be proved easily that

—> 0 where O tends to zero.In otherwords, the function

© 1 w 1
z”:1 2n-1)z) ‘z”_l 2n-1)z,)
(InPY 7 )(i)

o 1
Z —— is convergent on the real axis. So far we have considered those cases when all ¢ 42 s

=1 (2n-1)"

+i or (—1) , but it may happens that for some finite number of primes(we denote any such primeby p, ) the

(Inp ;)7 )(i)
value of ep“le is different from the rest. But since HZ jk ( 11 ) or
- (P)'Z)
Hj Zk (+) is bounded ,S0 it can be proved easily that
(P)'Z)

—> 0 This completes proof of our assertion.

- 1 e 1
‘ZW . ‘Z (2n-1)'z,)

14 3

1 1
It is clear from our above discussion that if Z=-+4i@, where 0<(-)<1 then {(Z) is
t t

convergent as because

£(2)| |
> 1
(2(2 H

n=l1

IA

3 |

= (2n —1)|

where m is some positive finite real number. Consequently, ' (Z) is analytic on the right half plane i,e
R(z) > 0. We have already told that Since,

)< (mo)
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z
1) the value of (P?) of the numerator

there is a possibility that in case of odd prime P, forany of (PZ

(InpXiX9 s infinitely many-valued. Let us explore

1
"1 (2n— 1)(21)

may be different from that of the denominator,as because e

such possibility for the point z, or z,. Suppose,for any factor of z , for the P(Zl) of the

(In p)(7)(@))
numerator,the value of e 4In?2 =—1 but for the P(Zl) ofthe denominator,the value of
(In P)(7)(@)
e 4ln2  — (£7) Then,
P'z))
z)-1
+i 1)
I+——= i
JP
Consequently,

o0

2(2 _1)( _( )Z

n=1 n=1 (2 _1)( )
Consequently, When zw ! = izw !
u g _— == _
ety = 2n—1)z,) = 2n—1)z,)

A S T S 23
;(Zn—l)(zl) ;(2@(21) @)

(22)

, then for equation (1.2.1.2)

Consequently,
$(z)=0 (24)

When §~ 1 — N 1 , then for equation (1.2.1.2)
2. 2n—-1)z) 2 2n—1)z)

(Z(zn 1)( z)) 2(2;1)(21)

In otherwords, Dirichlet eta function becomes zero. Arguments are almost similar for z,. On the otherhand,if

(25)

none of the value of P(Zl) or P(Zz) of the numerator is different from that of the denominator,then for z,,

¢(z)#0  but 2L e 1L g ad for oz, {(z)#0 but
1@n-Dz) e z)
> 4_1 - iy 1( _  Thus all non-trival roots of Riemann zeta function as well as roots
Cn—-1)=z,) 2n)'z,)
8k £1)(7)() . ,
of Dirichlet eta function lie on the line Z = 2 [T] and this completes the proof of Riemann
Hypothesis.
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