(τ₁, τ₂) – RGB Closed Sets in Bitopological Spaces

Bushra Jaralla Tawfeeq, Dunya Mohamed Hammmed
Mathematics Department, College of Education, Al – Mustansirya University

Abstract: In this paper we introduce and study the concept of a new class of closed sets called (τ₁, τ₂) – regular generalized b-closed sets (briefly (τ₁, τ₂) – rgb-closed) in bitopological spaces. Further we define and study new neighborhood namely (τ₁, τ₂) – rgb- neighbourhood (briefly (τ₁, τ₂) – rgb-nhd) and discuss some of their properties in bitopological spaces. Also, we give some characterizations and applications of it.

I. Introduction

In 1963, Kelley J. C. [16] was first introduced the concept of bitopological spaces, where X is a nonempty set and τ₁, τ₂ are two topologies on X. 1970, M.K. Signal [28] introduced some more separation axioms that consider with bitopological spaces. 1977, V. Popo. [26] introduced some properties of bitopological semi separation.

In (1985), Fukutake [7] introduced and the studied the notions of generalized closed (g-closed) sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Sundaram, P. and Shiek John [29], El- Tantawy and Abu-Donia [6] introduced the concept of ω-closed sets and generalized semi-closed (gs-closed) sets in bitopological spaces respectively.

In §2 we recollect the basic definitions which are used in this paper.

In §3 we find basic properties and characteristics of (τ₁, τ₂) – rgb closed sets. Also we provide several properties of above concept and to investigate its relationships with certain types of closed sets with some new results and examples.

In §4 we provide several properties of characterizations of (τ₁, τ₂) – rgb-closed sets (τ₁, τ₂) – rgb-open sets and (τ₁, τ₂) – rgb – nhd of a point as well as some propositions and examples that are included throughout the section.

II. Introduction And Preliminaries

If A is a subset of a topological space X with a topology τ, with then the closure of A is denoted by τ -cl(A) or cl(A), the interior of A is denoted by τ -int(A) or int(A), semi-closure (resp. pre-closure) of A is denoted by τ - scl(A) or scl(A) (resp. τ - pcl(A) or pcl(A)), semi-interior of A is denoted by τ - sint(A) or sint(A) and the complement of A is denoted by A'.

Before entering into our work we recall the following definitions:

Definition 2.1. A subset A of a topological space (X, τ) is called:

1) an α-open set [18] if A ⊆ int(cl(int(A))).

2) a semi-open set [12] if A ⊆ cl(int(A)).

3) a pre-open set [13] if A ⊆ int(cl(A)).

4) a semi-pre-open set ([6]-open set)[5] if A ⊆ cl(int(cl(A))).

5) a regular open set [9] if A = int(cl(A)).

6) a b-open set [1] if A ⊆ int(cl(A)) ∪ cl(int(A)).
Remark 3.2: The family of all τ and U is 1. Definition 2.4 The complements of the above mentioned sets are called their respective open sets.

8) a generalized semi closed set [25] (abbreviated gsclosed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 9) a semi generalized closed set [10] (abbreviated sgcl(A)) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X. 11) a strongly generalized closed set [27] (abbreviated $^{*}g$ closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X. 12) a generalized ggbc closed set [30](abbreviated ggbc closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X. 13) a regular generalized bclosed set [23](abbreviated rgb- closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular in X. 2) intersection of all semi open sets [21] (abbreviated ag-open) if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 3) an open set (21) (X, τ_{1}, τ_{2}) a topological space (X, τ_{1}, τ_{2}) is a topological space if $A \subseteq \tau_{1}$ - int τ_{1} - cl τ_{1} (A)]

Definition 2.3. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is called a 1. (τ_{1}, τ_{2}) -pre open [12] if $A \subseteq \tau_{1}$ - int τ_{1} - cl τ_{1} (A)]

Definition 2.4. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is called a 1. τ_{i}, τ_{j} - g closed [7] if $\tau_{i} - cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \subseteq \tau_{i}$. 2. (τ_{1}, τ_{2}) - semi open [20] if $A \subseteq \tau_{1}$ - cl τ_{1} - int τ_{1} (A)]

III. (τ_{1}, τ_{2}) - RGB Closed Sets In Bitopological Spaces

In this section we introduce (τ_{1}, τ_{2}) - rgb-closed sets in bitopological spaces and study some of their properties.
Proposition 3.3: If A is τ_j-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed set.

Proof. Let A be any τ_j-closed set and U be any τ_i-regular-open set containing A. Since τ_j - $\text{bcl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$, then $\tau_j - \text{bcl}(A) \subseteq U$. Hence A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.4: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}\}$ and $\tau_j = \{X, \phi, \{\phi\}\}$, the set $\{b\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-b-closed.

Proposition 3.5: If A is (τ_i, τ_j)-b-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed set.

Proof. Let A be any (τ_i, τ_j)-b-closed set in (X, τ_i, τ_j) such that $A \subseteq U$, where U is τ_i-regular-open set. Since A is (τ_i, τ_j)-b-closed which implies that $\tau_j - \text{bcl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$, then $\tau_j - \text{bcl}(A) \subseteq U$. Hence A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.6: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{a, c\}\}$ and $\tau_j = \{X, \phi, \{\phi\}\}$, the set $\{a, c\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-b-closed.

Proposition 3.7: If A is τ_j-closed (resp. τ_j-semi-closed) subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

Proof. Let A be any τ_j-closed set in (X, τ_i, τ_j) such that $A \subseteq U$, where U is τ_j-regular-open set. Since A is τ_j-closed, then $\tau_j - \text{bcl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$, so $\tau_j - \text{bcl}(A) \subseteq U$. Therefore A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.8: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \phi\}$, the set $\{c\}$ is (τ_i, τ_j)-rgb-closed but not τ_i-closed.

Remark 3.9: The concept of (τ_i, τ_j)-closed and (τ_i, τ_j)-rgb-closed sets are independent of each other as seen from the following examples.

Example 3.10: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{c\}\}$, the set $\{b\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-closed.

Example 3.11: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{c\}\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a\}\}$, the set $\{a, b\}$ is (τ_i, τ_j)-closed but not (τ_i, τ_j)-rgb-closed set.

Remark 3.12: The concept of (τ_i, τ_j)-semi-closed and (τ_i, τ_j)-rgb-closed sets are independent of each other as seen from the following examples.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a\}\}$. Then the set $\{c\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-semi-closed set.

Example 3.14: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{c\}\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{b\}, \{b, c\}\}$, the set $\{b\}$ is (τ_i, τ_j)-semi-closed but not (τ_i, τ_j)-rgb-closed set.

Remark 3.15: (τ_i, τ_j)-pre-closed and (τ_j, τ_i)-rgb-closed sets are independent of each other as seen from the following two examples.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{b\}\}$, the set $\{a, b\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-pre-closed.

Example 3.17: Let X, τ_i and τ_j be as in Example 3.14. The set $\{b, c\}$ is (τ_i, τ_j)-pre-closed but not (τ_i, τ_j)-rgb-closed.
Remark 3.18: \((\tau_i, \tau_j)\) - semi-pre-closed sets \((\beta\text{-closed sets})\) and \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed sets are independent of each other as seen from the following two examples.

Example 3.19: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{c\}\}\) and \(\tau_j = \{X, \varnothing, \{a, b\}, \{a, c\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{a, b\}\}\) the set \(\{a\}\) is \((\tau_i, \tau_j)\) - \(\beta\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Example 3.20: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{b\}, \{c\}\}\) the set \(\{a, c\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(\beta\) - closed.

Remark 3.21: The concept of \((\tau_i, \tau_j)\) - \(\text{rgb}^*\) - closed sets and \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed sets are independent of each other as seen from the following example.

Example 3.22: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{b\}\}\) . Then the set \(\{a\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(\text{rgb}^*\) - closed and \(\{b\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}^*\) - closed but not \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Proposition 3.23: If \(A\) is \((\tau_i, \tau_j)\) - \(g\) - closed subset of \((X, \tau_i, \tau_j)\) then \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Proof. Suppose that \(A\) is \((\tau_i, \tau_j)\) - \(g\) - closed set \(U\) be any \(\tau_i\) - regular - open set such that \(A \subseteq U\). Since \(A\) is \((\tau_i, \tau_j)\) - \(g\) - closed, then \(\tau_j \setminus \text{cl}(A) \subseteq \U\), we have \(\tau_j \setminus \text{bcl}(A) \subseteq \tau_j \setminus \text{cl}(A) \subseteq \U\). Hence \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.24: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) the set \(\{a\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(g\) - closed.

Proposition 3.25: If \(A\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed subset of \((X, \tau_i, \tau_j)\) then \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Proof. Let \(A\) be any \((\tau_i, \tau_j)\) - \(g^*\) - closed set and \(U\) be any \(\tau_i\) - regular - open set containing \(A\). Since \(A\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed set and \(\tau_j \setminus \text{cl}(A) \subseteq \U\), \(\tau_j \setminus \text{bcl}(A) \subseteq \tau_j \setminus \text{cl}(A) \subseteq \U\), so \(\tau_j \setminus \text{bcl}(A) \subseteq \U\). Therefore \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.26: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{b\}\}\) . Then the set \(\{a\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(g^*\) - closed.

Proposition 3.27: If \(A\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed subset of \((X, \tau_i, \tau_j)\) then \(A\) is \((\tau_i, \tau_j)\) - \(\text{gb}\) - closed.

Proof. Assume \(A\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed, \(A \subseteq \U\) and \(U\) is \(\tau_i\) - regular - open set. Since \(A\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed set, we have \(\tau_j \setminus \text{pcl}(A) \subseteq \U\) and \(\tau_j \setminus \text{pcl}(A) \subseteq \tau_j \setminus \text{bcl}(A) \subseteq \U\), \(\tau_j \setminus \text{bcl}(A) \subseteq \U\). Therefore \(A\) is \((\tau_i, \tau_j)\) - \(\text{gb}\) - closed.

The following example show that the converse of the above proposition is not true:

Example 3.28: Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}\}\) . Then the set \(\{a\}\) is \((\tau_i, \tau_j)\) - \(g^*\) - closed.

Proposition 3.29: If \(A\) is \((\tau_i, \tau_j)\) - \(\text{gb}\) - closed subset of \((X, \tau_i, \tau_j)\) then \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Proof. Let \(A\) be any \((\tau_i, \tau_j)\) - \(\text{gb}\) - closed set \((X, \tau_i, \tau_j)\) such that \(A \subseteq \U\), where \(U\) is \(\tau_i\) - regular - open set. Since \(A\) is \((\tau_i, \tau_j)\) - \(\text{gb}\) - closed set, which implise that \(\tau_j \setminus \text{bcl}(A) \subseteq \U\). Therefore \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.30 Let \(X = \{a, b, c\}\) and \(\tau_i = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_j = \{X, \varnothing, \{a\}, \{b\}\}\) . The set \(\{a, b\}\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed but \(\text{not}(\tau_i, \tau_j)\) - \(\text{gb}\) - closed.

Proposition 3.31: If \(A\) is \((\tau_i, \tau_j)\) - \(\text{rb}\) - closed subset of \((X, \tau_i, \tau_j)\) then \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.

Proof. Let \(A\) be any \((\tau_i, \tau_j)\) - \(\text{rb}\) - closed set \((X, \tau_i, \tau_j)\) and \(U\) be any \(\tau_i\) - regular open set containing \(A\). Since \(A\) is \((\tau_i, \tau_j)\) - \(\text{rb}\) - closed set the \(\tau_i \setminus \text{cl}(A) \subseteq \U\) and \(\tau_i \setminus \text{bcl}(A) \subseteq \tau_i \setminus \text{cl}(A) \subseteq \U\). Hence \(A\) is \((\tau_i, \tau_j)\) - \(\text{rgb}\) - closed.
Proposition 3.43: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a, b\}, \{a, b\}\}$ and $\tau_j = \{X, \emptyset, \{a\}\}$, the set $\{a\}$ is (\(\tau_i, \tau_j\))-rgb-closed but not (τ_i, τ_j)-rw-closed.

Proposition 3.33: If A is (τ_i, τ_j)-g_{α}-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

Proof. Let A be any (τ_i, τ_j)-g_{α}-closed set and U be any τ_i-regular open set containing A. Since A is (τ_i, τ_j)-g_{α}-closed set, then $\tau_j - \text{bcl}(A) \subseteq \tau_j - \alpha \text{cl}(A) \subseteq U$. Therefore $\tau_j - \text{bcl}(A) \subseteq U$. Hence A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true as seen from the following example.

Example 3.34: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a, b\}, \{a\}\}$ and $\tau_j = \{X, \emptyset, \{a\}\}$, the set $\{a, \{a\}\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-g_{α}-closed.

Similarly, we prove the following Proposition:

Proposition 3.35: If A is (τ_i, τ_j)-g_{α}-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed but not conversely.

Example 3.36: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a, b\}, \emptyset\}$ and $\tau_j = \{X, \emptyset, \{a\}\}$, the set $\{a\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-g_{α}-closed.

Proposition 3.37: If A is (τ_i, τ_j)-g_{α}-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

Proof. Let A be any (τ_i, τ_j)-g_{α}-closed set in (X, τ_i, τ_j) such that $A \subseteq U$, where U is τ_i-regular open set. Since A is (τ_i, τ_j)-g_{α}-closed set, $\tau_i - \text{bcl}(A) \subseteq U$. Hence A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.38: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a, b\}, \emptyset\}$ and $\tau_j = \{X, \emptyset, \{a\}\}$, the set $\{a\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-g_{α}-closed.

Proposition 3.39: If A is (τ_i, τ_j)-g_{α}-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

Proof. Let A be any (τ_i, τ_j)-g_{α}-closed set and U be any τ_i-regular open set containing A. Since A is (τ_i, τ_j)-g_{α}-closed set, then $\tau_j - \text{cl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$. Therefore A is (τ_i, τ_j)-rgb-closed.

The following example show that the converse of the above proposition is not true:

Example 3.40: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a, b\}, \{b\}\}$ and $\tau_j = \{X, \emptyset, \{a\}\}$, the set $\{a, \{b\}\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-g_{α}-closed.

Similarly, we prove the following Proposition:

Proposition 3.41: If A is (τ_i, τ_j)-g_{α}-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true in general, as seen from the following example.

Example 3.42: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b\}\}$ and $\tau_j = \{X, \emptyset, \{a, b\}\}$, the set $\{a\}$ is (τ_i, τ_j)-rgb-closed but not (τ_i, τ_j)-g_{α}-closed.

Proposition 3.43: If A is (τ_i, τ_j)-rg-closed subset of (X, τ_i, τ_j) then A is (τ_i, τ_j)-rgb-closed.

Proof. Let A be any (τ_i, τ_j)-rg-closed set and U be any τ_i-regular open set containing A. Since A is (τ_i, τ_j)-rg-closed set, then $\tau_j - \text{cl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$. Therefore A is (τ_i, τ_j)-rgb-closed.

The converse of the above proposition need not be true as seen from the following example.
Example 3.44: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{b\}, \{a,c\}\}$ and $\tau_j = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$, the set $\{b\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed but not $(\tau_i, \tau_j)^-\text{rgb}$-closed.

Proposition 3.45: If A is $(\tau_i, \tau_j)^-\text{sgb}$-closed subset of (X, τ_i, τ_j) then A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

Proof. Let A be any $(\tau_i, \tau_j)^-\text{sgb}$-closed set in (X, τ_i, τ_j) such that $A \subseteq U$, where U is τ_i-regular open set. Since A is $(\tau_i, \tau_j)^-\text{sgb}$-closed set, $\tau_i - \text{bcl}(A) \subseteq U$. Hence A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

The following example show that the converse of the above proposition is not true:

Example 3.46: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{b\}, \{a,b\}\}$ and $\tau_j = \{X, \emptyset, \{c\}\}$, the set $\{a,b\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed but not $(\tau_i, \tau_j)^-\text{sgb}$-closed.

Proposition 3.47: If A is $(\tau_i, \tau_j)^-\text{w}$-closed subset of (X, τ_i, τ_j) then A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

Proof. Let A be any $(\tau_i, \tau_j)^-\text{w}$-closed set and U be any τ_i-regular open set containing A. Since A is $(\tau_i, \tau_j)^-\text{w}$-closed set, then $\tau_j - \text{cl}(A) \subseteq U$, so $\tau_j - \text{bcl}(A) \subseteq \tau_j - \text{cl}(A) \subseteq U$. Therefore A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

The converse of the above proposition need not be true as seen from the following example:

Example 3.48: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\tau_j = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$, the set $\{a,b\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed but not $(\tau_i, \tau_j)^-\text{w}$-closed.

Similarly, we prove the following Proposition

Proposition 3.49: If A is $(\tau_i, \tau_j)^-\text{w}$-closed subset of (X, τ_i, τ_j) then A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

The converse of the above proposition need not be true as seen from the following example:

Example 3.50: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\tau_j = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$, the set $\{a\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed but not $(\tau_i, \tau_j)^-\text{w}$-closed.

Proposition 3.51: If A is $(\tau_i, \tau_j)^-\text{rgw}$-closed subset of (X, τ_i, τ_j) then A is $(\tau_i, \tau_j)^-\text{rgb}$-closed.

The converse of the above proposition need not be true as seen from the following example:

Example 3.52: Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\tau_j = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$, the set $\{b\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed but not $(\tau_i, \tau_j)^-\text{rgw}$-closed.

IV. Characterizations And Properties Of $(\tau_i, \tau_j)^-\text{RGB-Closed Sets}$, $(\tau_i, \tau_j)^-\text{RGB -Open Sets}$ And $(\tau_i, \tau_j)^-\text{RGB - Neighborhoods}$

In this section we introduce some characterizations of $(\tau_i, \tau_j)^-\text{rgb}$-closed sets and $(\tau_i, \tau_j)^-\text{rgb}$-open sets, also we define and study new neighborhood namely $(\tau_i, \tau_j)^-\text{rgb}$-neighborhood (briefly $(\tau_i, \tau_j)^-\text{rgb}$-nhd) and discuss some of their properties.

Definition 4.1. A subset A of bitopological space (X, τ_i, τ_j) is called $(\tau_i, \tau_j)^-\text{rgb}$-open set if and only if its complement is $(\tau_i, \tau_j)^-\text{rgb}$-closed in X.

The family of all $(\tau_i, \tau_j)^-\text{rgb}$-open subsets of X is denoted by D^r RGBO (τ_i, τ_j)

Remark 4.2 Let A and B be two $(\tau_i, \tau_j)^-\text{rgb}$-closed sets in (X, τ_i, τ_j)
1) The union $A \cup B$ is not generally $(\tau_i, \tau_j)^-\text{rgb}$-closed set.
2) The intersection $A \cap B$ is not generally $(\tau_i, \tau_j)^-\text{rgb}$-closed set as seen from the following examples.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}\}$ and $\tau_j = \{X, \emptyset, \{a\}, \{b\}\}$, the subsets $\{a\}$ is $(\tau_i, \tau_j)^-\text{rgb}$-closed sets, but their union $\{a\} \cup \{b\} = \{a, b\}$ is not $(\tau_i, \tau_j)^-\text{rgb}$-closed set.

Example 4.4. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \emptyset, \{a\}, \{b\}\}$ and $\tau_j = \{X, \emptyset, \{b\}\}$, the subsets $\{a, c\}$ are $(\tau_i, \tau_j)^-\text{rgb}$-closed sets, but their intersection $\{a\} \cap \{b\} = \{b\}$ is not $(\tau_i, \tau_j)^-\text{rgb}$-closed set.
Remark 4.5 Let A and B be two (τ_i, τ_j)-rgb - open sets in (X, τ_i, τ_j)
1)The union $A \cup B$ is not generally (τ_i, τ_j)-rgb - open set .
2) The intersection $A \cap B$ is not generally (τ_i, τ_j)-rgb - open set as seen from the following examples.

Example 4.6. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{c\}, \{b,c\}\}$ and $\tau_j = \{X, \phi, \{b\}\}$,then the subsets $\{a\}, \{c\}$ is (τ_i, τ_j)-rgb - open sets but their union $\{a\} \cup \{c\} = \{a, c\}$ is not (τ_i, τ_j)-rgb - open set.

Example 4.7. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a,b\}, \{c\}\}$ and $\tau_j = \{X, \phi, \{a,b\}\}$,then the subsets $\{a,c\}, \{b,c\}$ is (τ_i, τ_j)-rgb - open sets but their intersection $\{a,c\} \cup \{b,c\} = \{c\}$ is not (τ_i, τ_j)-rgb - open set.

Proposition 4.8: If a set G is (τ_i, τ_j)-rgb-closed set in (X, τ_i, τ_j), then $\tau_j - cl(A)$ contains no non-empty τ_i-regular -closed set.

Proof. Let G be (τ_i, τ_j)-rgb-closed and F be a τ_i-regular -closed set such that $F \subseteq (\tau_j - cl(G))^\circ$. Since G is (τ_i, τ_j)-rgb-closed, then $G \subseteq D^\circ$ RGB (τ_i, τ_j) which impluse that $\tau_j - cl(G) \subseteq F^\circ$. Then $F \subseteq \tau_j - cl(G) \cap (\tau_j - cl(G))^\circ$. Therefore F is empty.

The converse of the above theorem need not be true as seen from the following example.

Example 4.9. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{c\}, \{b,c\}\}$, $\tau_j = \{X, \phi, \{b\}\}$. If $G = \{b\}$, then $\tau_j - cl(G) - G = \{a,c\}$ does not any non-empty τ_i-regular -closed set. But G is a (τ_i, τ_j)-rgb-closed set.

Proposition 4.10: If A is (τ_i, τ_j)-rgb-closed set and $A \subseteq B \subseteq \tau_j - cl(A)$, then B is (τ_i, τ_j)-rgb-closed set.

Proof. Let $B \subseteq U$ where U is - regular open set. Since $A \subseteq B$, so $\tau_j - cl(A) \subseteq U$. But $\tau_j - cl(A)$,

We have $\tau_j - bc l(B) \subseteq \tau_j - (\tau_i - cl(A))$ then $\tau_j - bc l(B) \subseteq U$. Therefore B is rgb-closed in X.

Proposition 4.11: Let $A \subseteq Y \subseteq X$ and if A is (τ_i, τ_j)-rgb - closed in X then A is (τ_i, τ_j)-rgb -closed relative to Y.

Proof. Let $A \subseteq Y \cap G$ where G is τ_i - regular open in X. Since A is (τ_i, τ_j)-rgb-closed . Then $\tau_i - cl(A) \subseteq clG$. Then $Y \cap \tau_i - cl(A) \subseteq Y \cap G$. Thus A is rgb -closed relative to Y.

Proposition 4.12: If A is (τ_i, τ_j)-rgb-closed set, then $\tau_j - cl(\{x\}) \cap A \neq \phi$ for each $x \in \tau_j - cl(A)$.

Proof. If $\tau_j - cl(\{x\}) \cap A = \phi$ for each $x \in \tau_j - cl(A)$, then $A \subseteq (\tau_i - cl(\{x\}))^\circ$. Since A is (τ_i, τ_j)-rgb-closed set, so $\tau_i - cl(A) \subseteq (\tau_j - cl(\{x\}))^\circ$ which impluse that $x \notin \tau_j - cl(A)$. This contradicts to the assumption.

Definition 4.13. Let (X, τ_i, τ_j) be bitopological space, and let $g \subseteq X$. A subset N of X is said to be, (τ_i, τ_j)-rgb-neighborhood (briefly (τ_i, τ_j)-rgb-nhd) of a point g if and only if there exists a (τ_i, τ_j)-rgb-open set G such that $g \in G \subseteq N$.

The set of all (τ_i, τ_j)-rgb-nhd of a point g is denoted by (τ_i, τ_j)-rgb-N(g).

Proposition 4.14: Every τ_i-nhd of $g \in X$ is a (τ_i, τ_j)-rgb-nhd of $g \in X$.

Proof. Since N is τ_i-nhd of $g \in X$, then there exists τ_i-open set G such that $g \in G \subseteq N$. Since every τ_i-open set is (τ_i, τ_j)-rgb-open set, $G = (\tau_i, \tau_j)$-rgb-open set. By Definition 4.13. $N = (\tau_i, \tau_j)$-rgb-nhd of x.

Remark 4.15: The converse of the above proposition need not be true as seen from the following example.

Example 4.16. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$. $\tau_j = \{X, \phi, \{a\}, \{b,c\}\}$.

D° RGBO $(\tau_i, \tau_j) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$, the set $\{b,c\}$ is (τ_i, τ_j)-rgb-nhd of c since there exists a (τ_i, τ_j)-rgb-open set $G = \{c\}$ such that $c \in \{c\} \subseteq \{b,c\}$. However $\{b,c\}$ is not τ_i-nhd of c since no τ_i-open set G such that $c \in G \subseteq \{b,c\}$.

Remark 4.17. The (τ_i, τ_j)-rgb-nhd of a point $g \in X$ need not be a (τ_i, τ_j)-rgb-open set in X as seen from the following example.

Example 4.18. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{b\}, \{c\}, \{b,c\}\}$. $\tau_j = \{X, \phi, \{b\}\}$.
D’ RGBO $(\tau_i, \tau_j) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}, the set \{a,c\} is \{(\tau_i, \tau_j) - rgb - nhd of c\}, since there exists a $(\tau_i, \tau_j) - rgb - open set G = \{c\}$ such that $c \in \{c\} \subseteq \{a,c\}$. However, \{a,c\} is not $(\tau_i, \tau_j) - rgb - open set$.

Proposition 4.19: If N a subset of a bitopological space (X, τ_i, τ_j) is $(\tau_i, \tau_j) - rgb - open set$, then N is $(\tau_i, \tau_j) - rgb - nhd$ of each of its points.

Proof. Let N be a $(\tau_i, \tau_j) - rgb - open set$. By Definition 4.13. N is an $(\tau_i, \tau_j) - rgb - nhd$ of each of its points.

Remark 4.20. The $(\tau_i, \tau_j) - rgb - nhd$ of a point $g \in X$ need not be a $(\tau_i, \tau_j) - nhd$ of x in X as seen from the following example.

Example 4.21. Let $X = \{a, b, c\}$ and $\tau_i = \{X, \phi, \{a\}, \{b\}, \{a,c\}\}$, $\tau_j = \{X, \phi, \{a,b\}, \{b\}\}$.

D’ RGBO $(\tau_i, \tau_j) = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{b,c\}\}$, the set \{a,c\} is $(\tau_i, \tau_j) - rgb - nhd$ of a, since there exists a $(\tau_i, \tau_j) - rgb - open set G = \{a\}$ such that $a \in \{a\} \subseteq \{a,c\}$. Also, the set \{a,c\} is $(\tau_i, \tau_j) - rgb - nhd$ of c, since there exists a $(\tau_i, \tau_j) - rgb - open set G = \{c\}$ such that $c \in \{c\} \subseteq \{a,c\}$. However, \{a,c\} is not $(\tau_i, \tau_j) - rgb - open set$ in X.

Proposition 4.22. Let (X, τ_i, τ_j) be a bitopological space:

1) $\forall g \in X, (\tau_i, \tau_j) - rgb - N(g) \neq \phi$

2) $\forall N \in (\tau_i, \tau_j) - rgb - N(g), \text{then } g \in N$.

3) If $N \in (\tau_i, \tau_j) - rgb - N(g), N \subseteq M$, then $M \in (\tau_i, \tau_j) - rgb - N(g)$.

4) If $N \in (\tau_i, \tau_j) - rgb - N(g), \text{then there exists } M \in (\tau_i, \tau_j) - rgb - N(g) \subseteq N \cup M$.

Proof. Since X is an $(\tau_i, \tau_j) - rgb - open set$, it is $(\tau_i, \tau_j) - rgb - nhd$ of every $g \in X$. Hence there exists at least one $(\tau_i, \tau_j) - rgb - nhd G$ for every $g \in X$. Therefore $(\tau_i, \tau_j) - rgb - N(g) \neq \phi, \forall g \in X$.

2) If $N \in (\tau_i, \tau_j) - rgb - N(g), \text{then } N = (\tau_i, \tau_j) - rgb - nhd G$ of g. Thus by Definition 4.13 $g \in N$.

3) If $N \in (\tau_i, \tau_j) - rgb - N(g), \text{then there is an } (\tau_i, \tau_j) - rgb - open set A$ such that $g \in A \subseteq N$, since $N \subseteq M$, $g \in A \subseteq M$ and M is an $(\tau_i, \tau_j) - rgb - nhd$ of g. Hence $M \in (\tau_i, \tau_j) - rgb - N(g)$. If $N \in (\tau_i, \tau_j) - rgb - N(g), \text{then there exists an } (\tau_i, \tau_j) - rgb - open set M$ such that $g \in M \subseteq N$. Since M is an $(\tau_i, \tau_j) - rgb - open set$, then it is $(\tau_i, \tau_j) - rgb - nhd$ of each of its points. Therefore $M \in (\tau_i, \tau_j) - rgb - N(h) \forall h \in M$.

References

τ_i, τ_j – RGB Closed Sets In Bitopological Spaces

www.iosrjournals.org