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Abstract- There are many elastoviscous fluids that can be characterised neither by Maxwell’s constitutive 

relations nor by Oldroyd’s constitutive relations. One such class of viscoelastic fluids is the Rivlin– Ericksen’s 
fluid. RIVLIN and ERICKSEN] have proposed a theoretical model for such viscoelastic fluid. The behaviour of 

surface waves propagating between two Rivlin–Ericksen elastico-viscous fluids is examined. The investigation is 

made in the presence of a vertical electric field and a relative horizontal constant velocity. The influence of both 

surface tension and gravity force is taken into account. Due to the inclusion of streaming flow a mathematical 

simplification is considered. The viscoelastic contribution is demonstrated in the boundary conditions. From 

this point of view the approximation equations of motion are solved in the absence of viscoelastic effects. The 

solutions of the linearized equations of motion under nonlinear boundary conditions lead to derivation of a 

nonlinear equation governing the interfacial displacement and having damping terms with complex coefficients. 

Index terms- viscoelastic effects; perturbation; permeability; elastoviscous fluids; porous medium; 
thermosolutal instability; thermohaline convection; convecting layers hydrothermal circulation; oscillatory 

modes; non-Newtonian fluids 

  

I. Introduction 
 Now a days a class of polymers are used for manufacturing parts of space-crafts, aeroplanes, tyres, belt 

conveyers, ropes, cushions, seats, foams, plastics, engineering equipments, etc. Recently, polymers are also used 

in agriculture, communication appliances and in biomedical applications. When fluid permeated a porous 

material, the gross effect is When fluid permeated a porous material, the gross effect is represented by Darcy’s 

law. As a result of this macroscopic law, the usual viscous terms in the equations of Rivlin–Ericksen’s elasto-

viscous fluid motion is replaced with 

 
where μ and μ ′ are the viscosity and viscoelasticity in the thermal instability of the Rivlin–Ericksen fluid, k1 is 

the medium permeability and q� is the Darcian (filter) velocity of the fluid. STOMMEL and FEDOROR [6] 
and LINDEN [7] have remarked that the length-scale characteristics of double diffusive convecting layers in the 

ocean may be sufficiently large to make the Earth rotation important to their formation. Moreover, the rotation 

of the Earth distorts the boundaries of a hexagonal convection cell in a fluid through a porous medium and the 

distortion plays an important role in the extraction of energy in the geothermal regions. The problem of thermal 

instability in fluid in porous mediums is of importance in geophysics, soil sciences, ground water hydrology and 

astrophysics. The scientific importance of the field has also increased because hydrothermal circulation is the 

dominant heat transfer mechanism in the development of young oceanic crust (LISTER [8]). The stability 

criteria are discussed theoretically and illustrated graphically in which stability diagrams are obtained. Regions 
of stability and instability are identified for the electric fields versus the wavenumber for the wavetrain of the 

disturbance. Numerical calculations showed that the ratio of the dielectric constant plays a dual role in the 

stability criteria. The damping role for the viscosity coefficient is observed. The viscoelasticity coefficient plays 

two different roles. A stabilizing influence is observed through the linear scope and a destabilizing role in the 

nonlinear stability picture is seen. 

 Keeping in mind the importance of ground water hydrology, soil sciences, geophysics and astrophysics, the 

thermal instability of the Rivlin–Ericksen elasto-viscous rotating fluid that permeates with suspended particles 

under variable gravity field in porous medium has been considered in this topic. 

 

II. Instability Of Superposed Streaming Fluids Through A Porous Medium:- 
This chapter treats the Kelvin-Helmholtz instability arising at the interface separating 2 superposed, viscous, 

electrically conducting fluids through a porous medium in the presence of a uniform 2D horizontal magnetic 

field. The stability motion was also assumed to be uniform, 2D, and horizontal. By applying the normal mode 

technique to the linearized perturbation equations, the dispersion relation was derived. The stability analysis was 

carried out for fluids of high kinematic viscosities. It was found that both viscosity and porosity suppressed the 
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stability, while streaming motion had a destabilizing influence.  The Kelvin-Helmholtz discontinuity arising at 

the plane interface between 2 superposed streaming fluids is of prime importance in various astrophysical, 

geophysical, and laboratory situations.  

 

III. Kelvin-Helmholtz Instability Of Rivlin-Ericksen 

Viscoelastic Fluid In Porous Medium:- 
 Kelvin-Helmholtz instability of Rivlin-Ericksen elasticoviscous fluid in porous medium is considered. 

The case of two uniform streaming fluids separated by a horizontal boundary is considered. It is found that for 

the special case when perturbations in the direction of streaming are ignored, perturbation transverse to the 

direction of streaming are found to be unnafected by the presence of streaming. In every other direction, a 

minimum value of wave-number has been found and the system is unstable for all wave-numbers greater than 

this minimum wave number. 

 When two superposed fluids flow one over the other with a relative horizontal velocity, the instability 
of the plane interface between the two fluids, when it occurs in this instance, is known as ’Kelvin-Helmholtz 

instability’. The instability of the plane interface separating two uniform superposed streaming fluids, under 

varying assumptions of hydrodynamics, has been discussed in the celebrated monograph by Chandrasekhar [1]. 

The experimental observation of the Kelvin-Helmholtz instability has been given by Francis [2]. The medium 

has been assumed to be non-porous. With the growing importance of viscoelastic fluids in modern technology 

and industries and the investigations on such fluids are desirable. The Rivlin-Ericksen fluid is one such 

viscoelastic fluid. Many research workers have paid their attention towards the study of Rivlin-Ericksen fluid. 

Johri [3] has discussed the viscoelastic Rivlin-Ericksen incompressible fluid under time-dependent pressure 

gradient. Sisodia and Gupta [4] and Srivastava and Singh [5] have studied the unsteady flow of a dusty elastico-

viscous Rivlin-Ericksen fluid through channel of different cross-sections in the present of the time dependent 

pressure gradient. Recently, Sharma and Kumar [6] have studied the thermal instability of a layer of Rivlin-
Ericksen elastico-viscous fluid acted on by a uniform rotation and found that rotation has a stabilizing effect and 

introduces oscillatory modes in the system. 

 The flow through a porous medium has been of considerable interest in recent years particularly among 

geophysical fluid dynamicists. An example in the geophysical context is the recovery of crude oil from the pores 

of reservoir rocks. A great number of applications in geophysics may be found in a recent book by Phillips [7]. 

The gross effect when the fluid slowly percolates through the pores of the rock is given by Darcy’s law. As a 

result, the usual viscous term in the equation of motion of Rivlin-Ericksen fluid is replaced by the resistance 

term 

 
Where μ and μ0 are the viscosity and viscoelasticity of the Rivlin-Ericksen fluid, k1 is the medium permeability 

and is the Darcian (filter) velocity of the fluid. Generally, it is accepted that comets consists of a dusty 

’snowball’ of a mixture of frozen gases which, in the process of their journey, changes from solid to gas and 

vice-versa. The physical properties of comets, meteorites and interplanetary dust strongly suggest the 

importance of porosity in astrophysical contex (McDonnel [8]). The instability of the plane interface between 
two uniform superposed and streaming fluids through porous medium has been investigated by Sharma and 

Spanos [9]. More recently, Sharma et al.  [10] have studied the thermosolutal convection in Rivlin-Ericksen 

fluid in porous medium in the presence of uniform vertical magnetic field. Keeping in mind the importance of 

non-Newtonian fluids in modern technology and industries and various applications mentioned above, Kelvin-

Helmholtz instability of Rivlin-Ericksen viscoelastic fluid in porous medium has been considered in the present 

topic.. 

   

IV. On Rivlin-Ericksen Elasto-Viscous Fluid Heated And Soluted 

From Below In The Presence Of Compressibility,Rotation And Hall Current- 
 A layer of compressible, rotating, elastico-viscous fluid heated & soluted from below is considered in 

the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the 

effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of 

stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, 

stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall 

currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of 

rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. 

Again, the dispersion relation is analyzed numerically & the results depicted graphically. 
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The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in 

the system which were non-existent in their absence. The case of overstability is discussed & sufficient 

conditions for non-existence of overstability are derived. For thermosolutal convection, buoyancy forces can 

arise not only from density differences due to variation in temperature gradient, but also from those due to 

variation in solute concentration and this double diffusive phenomenon has been extensively studied in recent 

years due to its direct relevance in the field of chemical engineering, astrophysics, and oceanography. Veronis 
[20] studied the problem of thermohaline convection in the layer of fluid heated from below and subjected to a 

stable salinity gradient. The physics is quite similar to Veronis thermohaline configuration in the stellar case, in 

that helium acts like salt raising the density and in diffusing more slowly than heat. The heat and solute being 

two diffusing components, thermosolutal (double-diffusive) convection is the general term dealing with such 

phenomenon. 

 The Hall current is likely to be important in many geophysical and astrophysical situations as well as in 

flows of laboratory plasmas. Sherman and Sutton [17] have considered the effect of Hall currents on the 

efficiency of a magneto-fluid dynamic (MHD) generator. The effect of Hall currents on the thermal instability of 

electrically conducting fluid in the presence of a uniform vertical magnetic field has been studied by Gupta [5]. 

Sharma and Gupta [14] investigated the effect of Hall currents on thermosolutal instability of a rotating plasma. 

 When the fluids are compressible, the equations governing the system become quite complicated. 
Spiegal and Veronis [18] have simplified the set of equations governing the flow of compressible fluids under 

the assumption that the depth of the fluid layer is much smaller than the scale height as defined by them, if 

motions of infinitesimal amplitude are considered. Sharma and Gupta [16] have considered the effect of 

suspended particles and Hall currents on the stability of compressible fluids saturating a porous medium. 

Chandrasekhar [3] has given a detailed account of the theoretical and experimental results on the onset of 

thermal instability (B´enard convection) in an incompressible, viscous Newtonian fluid layer under varying 

assumptions of hydrodynamics and hydromagnetics. In all these studies, fluid has been considered to be 

Newtonian. In case of non-Newtonian fluids, Bhatia and Steiner[2] have studied the problem of thermal 

instability of a Maxwellian viscoelastic fluid in the presence of rotation and found that rotation has a 

destabilizing influence in contrast to the stabilizing effect on a viscous Newtonian fluid. 

 Recently, Halder [7] investigated the flow of blood through a constricted artery in the presence of an 

external transverse magnetic field using Adomian’s decomposition method. The expressions for two term 
approximation to the solution of stream function, axial velocity component and wall shear stress are obtained in 

this analysis. In another application, Ajadi [1] studied the isothermal flow of a dusty viscous incompressible 

conducting fluid between two types of boundary motions-oscillatory and non-oscillatory under the influence of 

gravitational force. There is growing importance of non-Newtonian viscoelastic fluids in chemical technology, 

industry and geophysical fluid dynamics. Sharma and Kumar [15] have studied the effect of rotation on thermal 

instability in Rivlin-Erickson elastico-viscous fluids. Recently, Sunil et. al. [19] have studied the effect of Hall 

currents on thermosolutal instability of compressible Rivlin-Erickson fluids. Keeping in mind the conflicting 

tendencies of magnetic field and rotation 

 while acting together and the growing importance of non-Newtonian fluids in modern technology, 

industry, chemical technology and dynamics of geophysical fluids; we are motivated to study the thermosolutal 

instability of a compressible Rivlin-Erickson fluid in the presence of rotation and Hall currents. This problem to 
the best of our knowledge, has not been investigated yet. 

 

 
 

 

V. The Instability Of Streaming Walter’s Fluid In 

Porous Medium In Hydromagnetics- 
 The instability of the plane interface separating the two uniform, superposed, electrically conducting 

and counter - streaming elastico-viscous fluids through a porous medium is examined for viscoelastic polymeric 

solutions in the presence of a horizontal magnetic field and also in the presence and absence of surface tension. 

These solutions are known as Walters’ (modelB) fluids and their rheology is approximated by the Walters’ 

(model B) constitutive relations, proposed by Walters (1962). In the absence of surface tension, the 
perturbations transverse to the direction of streaming are found to be unaffected by the presence of streaming if 
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perturbations in the direction of streaming are ignored, whereas for perturbations in all other directions, there 

exists the instability for a certain wave number range. The magnetic field and surface tension are able to 

suppress this Kelvin-Helmoltz instability for small wave length perturbations, and the medium porosity and the 

viscoelasticity reduce the stability range given in terms of a difference in streaming velocities and the Alfven 

velocity. 

 The instability of the plane interface separating the two superposed semi - infinite fluids flowing with 
different velocities has been considered by Helmholtz (1868) and Kelvin (1910) and a review of this Kelvin - 

Helmholtz instability, under varying assumptions of  hydrodynamics and hydromagnetics, has been given by 

Chandrashekhar (1961). Helmholtz stated that every perfect geometrically sharp edge by which a fluid flows out 

tear it as under and establish a surface of separation; however, slowly the rest of the fluid may more. A good 

review of the interface between two fluids in relative motion has been given by Gerwin (1968). Alterman (1961) 

has studied the effect of surface tension to the Kelvin-Helmholtz instability of two rotating fluids. Reid (1961) 

studied the effect of surface tension and viscosity on the stability of two superposed fluids. Bellman and 

Pennington (1954) further investigated in detail illustrating the combined effects of viscosity and 

surfacetension.The medium has been assumed to be non - porous in the above studies.  

 

VI. .Almost Undirectional Flows - 
 In this chapter, two different classes of flows are examined in the limit of almost rectilinear flow 

domains, by using perturbation analysis of the full Navier-Stokes equations. These are: 

(a) Lubrication flows: these are confined or free surface flows with parabolic velocity profiles, under almost 

rectilinear boundaries or free surfaces. Typical examples are flow in converging and diverging channels, flow in 

pipes, and flow of thin films on substrates. 

(b) Stretching flows: these are free surface flows of plug-like velocity profile under almost rectilinear free 

surfaces, such as jet flows. 

Prototypes of these flows, such as flows in non-rectilinear domains, development of wet films under surface 

tension, and spinning/casting/blowing of polymeric fibers/sheets/films, are depicted.. 

 

VII. Properties Of Continuum Fluid:- 
Macroscopic and Microscopic Balances: The control volume is an arbitrary synthetic cut in space which can 

be either fixed or moving. It is appropriately chosen within or around the system under consideration, in order to 

apply the laws that describe its behavior. In flow systems, these laws are the equations of conservation (or 

change) of mass, momentum, and energy. To obtain information on average or boundaryquantities (e.g., of the 

velocity and the temperature fields inside the flow system), without a detailed analysis of the flow, the control 

volume is usually taken to contain or to coincide with the real flow system. The application of the principles of 

conservation to this finite system produces the macroscopic conservation equations. 

However, in order to derive the equations that yield detailed distributions of fields of interest, the control 
volume must be of infinitesimal dimensions that can shrink to zero, yielding a point-volume. This approach 

reduces the quantities to point-variables. The application of the conservation principles to this infinitesimal 

system produces the microscopic or differential conservation equations. In this case, there is generally no 

contact between the imaginary boundaries of the control volume and the real boundaries of the system. It is 

always convenient to choose the shape of the infinitesimal control volume to be similar to that of the geometry 

of the actual system; a cube for a rectangular geometry, an annulus for a cylindrical geometry and a spherical 

shell for a spherical geometry.  

 

VIII. Laminar Boundary Layer Flows:- 
 Boundary Layer Flow: In this chapter, we consider flows near solid surfaces known as boundary layer 

flows. One way of describing these flows is in terms of vorticity dynamics, i.e., generation, diffusion, 

convection, and intensification of vorticity. The presence of vorticity distinguishes boundary layer flows 

from potential flows, which are free of vorticity. In two-dimensional flow along the xy-plane, the vorticity 

is given by 

 
and is a measure of rotation in the fluid. As discussed in Chapter 6, vorticity is generated at solid boundaries. 
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IX. Equations And Figures :- 
9.1 Lubrication Flows: Lubrication flows are most applicable to processing of materials in liquid form, such as 

polymers, metals, composites and others. One-dimensional approximations can be derived from simplified mass 

and momentum balances by means of control volume principles, or by simplifying the general equations of 
change. This leads to the celebrated Reynolds equation [1],  

 
where h(x) is the thickness of the narrow channel or of the thin film, p is the pressure, St is the Stokes number, 

and Ca is the capillary number, 

 

 
that appears due to surface tension along an interface. Equation (9.1) can be solved: 

(a) for the pressure distribution and other relevant quantities, such as load capacity, friction, cavitation etc., 

when the thickness h(x) is known. Typical applications are lubrication of solid surfaces in relative motion, such 

as journalbearing, piston-cylinder and piston-rings of engines [2]. 

(b) for the thickness h(x), when the pressure is known. Typical examples are formation of thin films and coating 

applications [3]. 

 

9.1.1 Lubrication vs. Rectilinear Flow: The lubrication approximation for flows in nearly rectilinear channels 

or pipes, with nearly parallel walls can be derived intuitively from the complete set of flow equations. Mass 

conservation requires constant flow rate: 

Conservation of 
linear momentum in the flow direction requires pressure and viscous force balance in the same direction: 

The pressure 

gradient, ∂p/∂x, is usually imposed mechanically. For rectilinear channels and steady motion, ∂p/∂x is constant 

along the channel, equal to Δp/ΔL, where Δp is the pressure difference over a distance ΔL, Fig. 9.2. For constant 
pressure gradient, the momentum equation predicts linear shear stress and parabolic velocity profile. In these 

problems, the mechanism of fluid motion is simple; material flows from regions of high pressure to regions of 

low pressure (Poiseuille-type flow). 
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Figure 9.2. Force balance in (a) rectilinear flow, h0dp = 2τdx, and (b) lubrication flow, h(x)dp(x) = 2τ (x)dx. 

When one or both walls are at a slight inclination α relative to each other, the same governing equations are 

expected to hold. Now, however, they may locally be weak functions of x of order α. Take for instance, the 

pressure gradient in lubrication applications where the flow may be accelerating or decelerating, in converging 

or diverging channels, respectively. In such cases, ∂p/∂x is not constant along the channel. This can be seen in 

Fig. 9.2(b) where the pressure force needed to move two cones of liquid of the same width, dx, at two different 

positions along the channel isdifferent. Consequently, both ∂p/∂x and the velocity are functions of x. Therefore, 

we have 

 

 
Figure 9.3. Geometry of one-dimensional lubrication flow. The velocity profiles 

along the channel are a mixture of Couette and Poiseuille flow. 
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Equations (9.3) and (9.5) express conservation of linear momentum for a control volume. They both indicate 

that, due to negligible convection, there is no accumulation of momentum. Consequently, the forces capable of 

producing momentum are in equilibrium. 

As shown in Fig. 9.2, the forces on a control volume of width dx, are the net pressure force (dp/dx)A(x) and the 

shear stress force 2τxydx. However, the underlying mechanism in lubrication flows may be more complex than 

in Poiseuille flow. Consider, for instance, the schematic in Fig. 9.3. Through the action of viscous shear forces, 
the moving wall on one side sweeps fluid into a narrowing passage. This gives rise to a local velocity profile of 

Couette-type, ux=V y/h, with flow rate, Q=V h/2. Since Q is constant, in order to conserve mass, h(x) is 

decreasing. The flow then sets up a pressure gradient, in order to supply a Poiseuille-type flow component that 

redistributes the fluid and maintains a constant flow rate. 

 

9.1.2 Derivation of Lubrication Equations: The lubrication equations can be alternatively derived by 

dimensionless analysis, and by order of magnitude comparisons with the full Navier-Stokes equation: 

Equations (9.6) to (9.8) are made dimensionless using the following scaling

where α is a small parameter of the same order as the channel slope. The lubrication 

equation holds in geometries where  Upon substitution, the momentum 

equations yield (with asterisks suppressed hereafter) [4]: 

 
Since all dimensionless derivative terms in these two equations are of comparable order, the resulting 

dimensionless lubrication equations, in the limit of a ≈ 0 or aRe ≈ 0, are 

and
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These equations are similar to those derived intuitively from channel flow, i.e., Eqs. (9.2) and (9.3). Notice that 

high Reynolds numbers are allowed as far as the product αRe is vanishingly small, and the flow remains 

laminar. The appropriate boundary conditions are: 

 
Under these conditions, the solution to Eq. (9.5) is 

 

or The 
volume flux, and the pressure distribution in the lubricant layer can be calculated when the total flow rate, Q, 

and the inclination, α, are known. A lubrication layer will generate a positive pressure, and, hence, load 

capacity, normal to the layer only when the layer is arranged so that the relative motion of the two surfaces tends 

to drag fluid by viscous stresses from the wider to the narrower end of the layer. The load, W, supported by the 

pressure in slit flow is [5] 

 
where d is the height of the wide side of the converging channel, and L is the length of the channel. By 

decelerating the flow and by transmitting momentum, and thus load capacity to the boundary, the slope α is 
ultimately responsible for the pressure built-up. 

9.1.3Reynolds Equation for Lubrication: Mass conservation on an infinitesimal volume yields  

 
which states that the convection of mass in the control volume is used to increase the fluid volume at a rate of

 
where dx and dh are respectively the width in the flow direction, and the height of the volume. By rearranging, 

 
which, for confined and film flows, reduces respectively to 

and

 
Equations (9.18) and (9.19) represent the transient lubrication equations. The steady-state form of Eq. (9.18), 
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is integrated to 

and the pressure is 
calculated by 

where

The load capacity 
is 

and the shear or 

friction on the same surface is 

 
 

 It is easy to show that the load capacity is of order α−2, whereas the shear or friction is of order α−1. 

Thus, the ratio load/friction increases with α−1. Important applications of the lubrication theory for confined 
flows are journalbearing [2, 6], and piston-ring lubricated systems of engines [7]. Other flows that can be 

studied by means of the lubrication equations include wire coating [8], roll coating [9], and many polymer 

applications [10]. Starting from Eq. (9.17), the solution to these problems follows the procedure outlined above. 

The flow rate is often given by 

 
where V is the speed of production and hf is the final target thickness. The boundary condition on the pressure at 
the outlet may vary:  

( where fσ is the 

force per unit area due to surface tension) and combinations of them [11]. In confined lubrication flows, 

pressure build-up develops due to inclination, α, that may result in backflow of some of the entering liquid. This 

pressure is used to support loads. In typical thin-film lubrication flows, any pressure build-up is primarily due to 

surface tension. In fact, if surface tension is negligible, then the pressure gradient is zero. For film lubrication 

flows, the steady-state form of Eq. (9.19), 

 
is integrated to 
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where the film thickness, h, is unknown. However, the pressure gradient, dp/dx, can be deduced from surface 

tension, by means of the Young-Laplace [12] equation. By using the lubrication assumption that the slope, 

dh/dx, must be much smaller than unity, we get 

 
Here h(x) is the elevation of the free surface from the x-axis, and σ is the surface tension of the liquid. Then, 

 
Substituting Eq. (9.29) in Eq. (9.27) we get 

 
which is rearranged to 

 
Equation (9.31) is nonlinear and cannot be solved analytically. 
Some important applications of the thin-film lubrication equations are films falling under surface tension [11], 

dip and extrusion coating [6], and wetting and liquid spreading [12]. A similar class of problems includes 

centrifugal spreading which is common in bell sprayers and in spin coating [3, 12]. A rich collection of 

lubrication problems from polymer processing can be found in the relevant literature [13, 14], and from recent 

work on coating [15, 16]. 

 

Conclusion- 
 According to all the theoretical and experimental evidence we can consider some parameter which can 

explain the instability of streaming  fluid in porous Rivlin-Ericksen medium.Among them mobility ratio is a 
important parameter which is used primarily in flows through porous media, where steam is often injected to 

displace the more viscous oil [12, 23]. Intuitively, highly viscous and elastic materials can be stretched the most. 

This poses significant experimental challenges in producing ideal, extensional flows in order to measure 

elongational viscosity of viscoelastic liquids of low shear viscosity. This need does not exist in Newtonian 

liquids, the elongational viscosity of which is exactly three times the shear viscosity, by virtue of Newton’s law 

of viscosity. At this stage, fiber-spinning and other related operations (e.g., falling curtains and fibers under 

gravity) and the recent opposing jet method [24] appear to provide the best means (though not perfect [25]), to 

measure elongational viscosity. The elongational viscosity is extremely important in industrial polymer 

processes which may involve any kind of extensional deformation, given that  

(a) the common shear viscosity measurements do not provide any indication of the magnitude of the 

elongational viscosity at even moderate stretching or compression, and 

(b) the elongational viscosity may attain values ten-fold or even higher than the shear viscosity, which gives rise 
to huge normal stresses and therefore, to excessively high drawing forces and compressive loads, required to 

process highly elastic viscoelastic polymer melts or solutions. 
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