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Abstract : The problem of Rayleigh-Bénard convection in a ferromagnetic fluid saturated porous medium with 

the Maxwell-Cattaneo law is studied by the method of small perturbation. Modified Darcy-Brinkman model is 

used to describe the fluid motion. The horizontal porous layer is cooled from the upper boundary, while an 

isothermal boundary condition is imposed at the lower boundary. The non-classical Maxwell-Cattaneo heat flux 

law involves a wave type heat transport and does not suffer from the physically unacceptable drawback of 

infinite heat propagation speed. The resulting eigenvalue problem is solved exactly for simplified boundary 

conditions and the thresholds for the marginal stability are determined. Some of the known cases are derived as 

special cases. The influence of porous, magnetic, and non-magnetic parameters on the onset of ferroconvection 

has been analyzed. It is found that the Bénard problem for a Maxwell-Cattaneo ferromagnetic fluid is always 

less stable than the classical ferroconvection problem. It is shown that the destabilizing influence of the 

Cattaneo number is not attenuated by that of magnetic forces and vice versa, and that the aspect ratio of the 
convection cells changes when the parameters involved in the study vary with the porous structure bringing out 

considerable influence. 
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I.       INTRODUCTION 
It is well known that ferromagnetic fluids represent a class of controllable liquids with interesting 

properties capable of making a substantial impact on technology. Ferromagnetic fluids have almost the same 
magnetic characteristics as a solid but in many respects behave as a liquid. Ferromagnetic fluids can be used to 

transfer heat inasmuch as heat and mass transport in such magnetic fluids can be controlled by means of an 

external magnetic field. Numerous applications can be associated with these fluids including novel energy 

conversion device, levitation devices and rotating seals (Bashtovoy et al. [1]). Finlayson [2] first explained how 

an external magnetic field imposed on a horizontal layer of ferromagnetic fluid with varying magnetic 

susceptibility due to a temperature gradient results in a non-uniform magnetic body force, which leads to 

thermomagnetic convection. This form of heat transfer can be useful for cases where conventional convection 

fails to provide adequate heat transfer, for instance, in miniature micro scale devices or under reduced gravity 

conditions. 

Gupta and Gupta [3] investigated thermal instability in a layer of ferromagnetic fluid subject to coriolis 

force and permeated by a vertical magnetic field. It is substantiated that overstability cannot occur if the Prandtl 

number is greater than unity. Gotoh and Yamada [4] investigated the linear convective instability of a 
ferromagnetic fluid layer heated from below and confined between two horizontal ferromagnetic boundaries. 

The Galerkin technique is used and the Legendre polynomials are taken as the trial functions. It is shown that 

the magnetization of the boundaries and the nonlinearity of fluid magnetization reduce the critical Rayleigh 

number and the effects of magnetization and buoyancy forces are shown to compensate each other. 

Blums [5] examined the possibility of having convection in ferromagnetic fluids as a result of magneto-

diffusion of colloidal particles which gives rise to non-uniform magnetization. Stiles and Kagan [6] examined 

the thermoconvective instability of a horizontal layer of ferromagnetic fluid in a strong vertical magnetic field. 

Their work also questioned the satisfactory agreement claimed to exist between the experiments and the 

theoretical model of Finlayson [2] which has been generalized by them. Odenbach [7] investigated the 

convective flow generated by the interaction of a magnetic field gradient with a gradient in magnetization in a 

magnetic fluid. This gradient was caused by the diffusion of the magnetic particles in the field gradient.               
Aniss et al. [8] investigated the effect of a time-sinusoidal magnetic field on the onset of convection in a 

horizontal magnetic fluid layer heated from above. The Floquet theory is used to determine the convective 

threshold for free-free and rigid-rigid cases. The possibility to produce a competition between the harmonic and 

sub-harmonic modes at the onset of convection is discussed. 

Abraham [9] investigated the RBC problem in a micropolar ferromagnetic fluid layer in the presence of 

a vertical uniform magnetic field analytically. It is shown that the micropolar ferromagnetic fluid layer heated 

from below is more stable as compared with the classical Newtonian ferromagnetic fluid. The effect of radiative 
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heat transfer on the onset of Rayleigh-Bénard convection in a horizontal layer of a ferromagnetic fluid has been 

studied by Maruthamanikandan [10] within the framework of linear stability analysis. Consideration is given to 

two asymptotic cases, viz., transparent and opaque layers of fluid. The critical values marking the onset of 
convection are obtained using the Rayleigh-Ritz technique. 

Bajaj [11] considered thermosolutal convection in magnetic fluids in the presence of a vertical 

magnetic field and bifrequency vertical vibrations. The regions of parametric instability have been obtained 

using the Floquet theory. Maruthamanikandan [12] investigated the problem of gravitational instability in 

ferromagnetic fluids in the presence of internal heat generation, surface tension, and viscoelasticity. Ramanathan 

and Muchikel [13] investigated the effect of temperature-dependent viscosity on ferroconvective instability in a 

porous medium. It is found that the stationary mode of instability is preferred to oscillatory mode and that the 

effect of temperature-dependent viscosity has a destabilizing effect on the onset of convection. 

Saravanan [14] made a theoretical investigation to study the influence of magnetic field on the onset of 

convection induced by centrifugal acceleration in a magnetic fluid filled porous medium. The layer is assumed 

to exhibit anisotropy in mechanical as well as thermal sense. Numerical solutions are obtained using the 
Galerkin method. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted 

depending on the anisotropy parameters to enhance convection. The effect of anisotropies of magnetic fluid 

filled porous media is shown to be qualitatively different from that of ordinary fluid filled porous media. 

Singh and Bajaj [15] investigated numerically the effect of frequency of modulation, applied magnetic 

field, and Prandtl number on the onset of a periodic flow in a ferromagnetic fluid layer using the Floquet theory. 

Some theoretical results have been obtained to discuss the limiting behavior of the underlying instability with 

the temperature modulation. Depending upon the parameters, the flow patterns at the onset of instability have 

been found to consist of time-periodically oscillating vertical magnetoconvective rolls. Singh and Bajaj [16] 

considered the effect of time-periodic modulation in temperatures on the onset of ferroconvection with rigid 

boundaries. It is found that, under modulation, subcritical instabilities are found to occur in the form of 

subharmonic response. Also, the onset of instability in a ferromagnetic fluid layer is found to heavily depend 

upon the frequency of modulation when it is driven solely by the magnetic forces alone, the effect being the 
greatest for the low frequency modulation and negligible for the case of high frequency modulation. 

In view of the fact that heat transfer can be greatly enhanced due to thermomagnetic convection, the 

ferroconvection problems offer fascinating applications including cooling with motors, loudspeakers and 

transmission lines. 

The study of convection in a fluid saturated porous medium is of considerable interest due to its 

applications to chemical engineering, geothermal activities, oil recovery techniques and biological processes. 

Over the past couple of decades, a great deal of effort has been invested in studying natural convection in a 

fluid-saturated porous medium with and without uniformly distributed heat source keeping in mind the 

applications to nuclear reactor safety and geothermal reservoir engineering. An illuminating and detailed 

information on convective instability in porous media is available in the books of Ingham and Pop [17], and 

Nield and Bejan [18], and Vafai [19]. It is worth noting that porous medium convection has been given much 
attention because allowance of porous medium significantly simplifies the description of an average 

hydrodynamic flow and enables us to consider realistic boundary conditions for the velocity. 

The propagation of thermal waves is sometimes referred to as second sound effect. The classical 

energy equation allows for an infinite speed for the propagation of heat, which is physically unacceptable. The 

energy equation to be considered in the present work is effectively a damped wave equation and is therefore 

hyperbolic rather than parabolic. The knowledge of second sound has provided a rich source of information for 

the study and understanding of the superfluid state. Second sound is not in any sense a sound wave, but a 

temperature or entropy wave. In ordinary or first sound, pressure and density variations propagate with very 

small accompanying variations in temperature; in second sound, temperature variations propagate with no 

appreciable variations in density or pressure. Recently, it has been realized that this is not just a low temperature 

phenomenon, but has important applications in such fields as skin burns, phase changes, biological materials, 

and in nanofluids (Straughan [20]). 
Straughan and Franchi [21] investigated the effect of thermal waves upon the onset of convective 

instability of a Newtonian fluid confined in a horizontal layer of finite thickness. Stress-free boundaries have 

been considered. It is found that convection is possible in both heated above and below cases, the Benard 

problem for a Maxwell-Cattaneo fluid is always less stable than the classical one and overstability only occurs 

in the heated below case. 

Lebon and Cloot [22] examined the effects resulting from the substitution of the classical Fourier law 

of heat conduction by the Maxwell-Cattaneo law in Bénard’s and Marangoni’s problems. Considering only 

infinitesimally small perturbations, it is shown that when buoyancy is the single factor of instability, no 

stationary convection can develop in a fluid layer heated from above, but oscillatory convection is possible. It is 

found that in Maxwell-Cattaneo fluid, oscillatory convection does not play an important practical role. 
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Straughan [20] investigated the problem of thermal convection for a layer of fluid when the heat flux 

law of Cattaneo is adopted. The boundary conditions are taken to be rigid-rigid and isothermal. It is shown that 

for small Cattaneo number the critical Rayleigh number initially increases from its classical value until a critical 
value of the Cattaneo number is reached. For Cattaneo numbers greater than this critical value a notable Hopf 

bifurcation is observed with convection occurring at lower Rayleigh numbers and by oscillatory rather than 

stationary convection. It is also found that the aspect ratio of the convection cells likewise changes. 

Smita and Pranesh [23] studied the problem of the onset of Rayleigh-Bénard convection in a second 

order Colemann-Noll fluid by replacing the classical Fourier heat flux law with non-classical Maxwell-Cattaneo 

law. The Galerkin method is employed to determine the critical values. The eigenvalue problem is solved using 

the general boundary conditions on velocity and third type of boundary conditions on temperature. It is found 

that the classical Fourier heat flux law overpredicts the critical Rayleigh number compared to that predicted by 

the non-classical law and that the results are noteworthy at short times. Moreover, overstability is the preferred 

mode of convection. 

The problem of control of convection is of relevance and interest in innumerable ferromagnetic fluid 
applications and is also mathematically quite challenging. The problem of Rayleigh-Bénard convection in a 

ferromagnetic fluid saturated porous medium has been extensively studied. However, attention has not been 

paid to the effect of second sound on Rayleigh-Bénard convection in a horizontal porous layer of a 

ferromagnetic fluid. It is with this motivation that we study, in this paper, the problem of natural convection in a 

ferromagnetic fluid saturated porous layer subject to non-classical heat conduction with emphasis on how the 

stability criterion for the onset of ferroconvection would be modified in the presence of both the porous matrix 

and second sound. While the effect of a variety of non-uniform basic temperature gradients on the onset of                       

ferroconvection has been studied intensely [12], we have seen no work dealing with the effect of thermal waves 

upon the onset of ferroconvective instability in a porous layer. Under these circumstances, the present paper is 

devoted to studying qualitatively the effect of propagation of thermal waves on the onset of ferroconvection in a 

horizontal porous layer. The linear stability analysis is based on the normal mode technique. The modified 

Darcy-Brinkman law is used to model the momentum equation and we allow for a thermal wave of finite speed 
by adopting the heat flux model of Cattaneo. 

 
Fig. 1 Configuration of the problem. 

 

II.      MATHEMATICAL FORMULATION 
We consider a Boussinesq ferromagnetic fluid saturated sparsely distributed porous layer confined 

between two infinite horizontal surfaces with height ‘d’. A vertical downward gravity force acts on the fluid 

together with a uniform, vertical magnetic field oH


. A Cartesian frame of reference is chosen with the origin in 

the lower boundary and the z-axis vertically upwards. The lower surface at  z = 0 and upper surface at  z = d are 

maintained at constant temperatures 1T  and oT . The Boussinesq approximation is invoked to account for the 

effect of density variation. The governing equations describing flow in an incompressible ferromagnetic fluid 

are 
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where  q u,v,w


 is the fluid velocity, 
 
the porosity of the porous medium, t  the time,  p the pressure,

             
  the fluid density, g


 the acceleration due to gravity,

 f  the dynamic viscosity, f  the effective viscosity, 

k  the permeability of the porous medium, H


 the magnetic field, B


 the magnetic induction, o  a reference 

density, C  the specific heat,
 

,V HC  the specific heat at constant volume and constant magnetic field, o  the 

magnetic permeability, T  the temperature, M


 the magnetization,   the constant relaxation time, 1k  the 

thermal conductivity,   the coefficient of thermal expansion, aT   the arithmetic mean of boundary 

temperatures, Q


 the heat flux vector,  
1

2
q 

 
  and the subscript s represents the solid. 

 

Maxwell’s equations simplified for a non-conducting fluid with no displacement current take the form 
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Since the magnetization M


 is aligned with the magnetic field and is a function of temperature and magnetic 

field, we may write 
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The magnetic equation of state is linearized about the magnetic field oH


 and the reference temperature aT  to 

become 
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where χ  is the magnetic susceptibility and K  is the pyromagnetic coefficient. 

 

Basic State 
The basic state is quiescent and is given by 
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where the subscript b denotes the basic state and 1 oT T

d



 . The quiescent basic state has a solution in the 

form 
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where oH  is the uniform magnetic field and oM  is the  reference magnetization. The analysis is restricted to 

physical situations in which the magnetization induced by temperature variations is small compared to that 

induced by the external magnetic field. 

 

Perturbed State 
Since we are interested in the stability of the basic state, we superimpose infinitesimally small 

perturbations on the basic state according to 
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where primes denote perturbed quantities and H  



 
with   being the magnetic potential. 

Following the classical procedure of linear stability analysis, the linearized equations governing small 

perturbations turn out to be 
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where l and m are the  dimensionless wavenumbers in the x and y directions respectively and   is the growth 

rate. Substitution of (19) into Eqs. (16) – (18) yields 
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Non-dimensionalizing equations (20), (21) and (22) using the transformations 
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It should be noted that the boundary condition 0D   is indicative of the fact that the magnetic susceptibility 

is very large at the boundaries. Finlayson [2] used this type of boundary condition in order to obtain exact 

solution to the ferroconvective instability problem with free-free, isothermal boundaries. The derivation of the 

general boundary conditions on the magnetic potential is given in the work of Maruthamanikandan [12]. Noting 

that the principle of exchange of stabilities is valid [2, 22, 25], we arrive at the following stability equations 
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III.       EXACT  SOLUTION 
Because the linear eigenvalue system (28) – (30) has constant coefficients, it has a general solution 

with an exponential dependence on z. Equations (28), (29) and (30) together with boundary conditions (27) 
constitute an eigenvalue problem with R being the eigenvalue. Let us assume the solution in the following form 

so that they satisfy the boundary conditions 

3
1 2, ,

A
W A cos z A cos z sin z    


                                                                                               (31) 

where 1 2 3, andA A A  are constants. The condition for the existence of a non-trivial eigenvalue leads to the 

following expression for R 

     

   

2
1 2 2 2 2 2 2

2
3

2 22 2 2
31

Da a a a
NM a

R
M aa C a

   



 
    

 
 

   
  

 .                                                            (32) 

Before developing the consequences of (32), we mention a couple of limiting cases that can be derived from 

(32). In the limiting case of 0, and 1C Da    , one recovers the result of Finlayson [2] and the 

associated Rayleigh number R  is given by 

 
 

3
2 2

2
3

2 2 2
3

a NM a
R

a M a






 


 .                                                                                                          (33) 

When 0C  , one obtains the Rayleigh number expression for Darcy-Brinkman ferroconvection problem [25] 

and the same is given by

      

 

2
1 2 2 2 2 2 2

2
3

2 2 2
3

Da a a a
NM a

R
a M a

   



 
    

 
 


 .                                                     (34) 

In the limiting case of 0, and 1N Da    , one recovers the result of Lebon and Cloot [22] and the 

corresponding Rayleigh number R  is given by
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 
 

3
2 2

2 2 21

a
R

a C a








  
  

 .                                                                                                                     (35) 

In this case R  assumes its minimum value at the critical wavenumber 
 2 2

2 1 1 1
c

C C
a

C

   
 .                

When 0, and 1N C Da     , we obtain

  
3

2 2

2

a
R

a

 
                                                                                                                                      (36) 

which is the well-known expression concerning the problem of Rayleigh-Bénard convection in a Newtonian 

Fourier fluid in the absence of porous medium [24]. We find that R  assumes its minimum value 427 4cR   

at 2ca  . Moreover, in the limiting case of 0, 1 and 0N C Da     , one recovers the classical result 

pertaining to Darcy porous medium convection in a Newtonian Fourier fluid [18] and the corresponding 

Rayleigh number R  is given by

  
2

2 2

2

a
R

a

 
  .                                                                                                                                   (37) 

We find that R  assumes its minimum value 24cR   at ca  . 

 

IV.     RESULTS  AND  DISCUSSION 
The problem of convective instability driven by a coupling of thermal, porous and magnetic effects in 

an initially quiescent ferromagnetic fluid saturated porous layer is investigated analytically by the method of 

small perturbation. It should be noted that the heat is transferred purely by conduction in the quiescent state and 

by both conduction and convection in the steady convective state. It is also of interest to note that for non-
dissipative flows there is an alternative variational approach to stability which relies on determining whether or 

not the energy of the flow is a minimum at equilibrium [26]. It should be remarked that the use of realistic flow 

boundary conditions does not qualitatively but quantitatively change the critical values. Similarly the use of 

realistic boundary conditions on the magnetic potential is of only very limited impact on the stability of the 

system. It is well known that rigid-rigid boundaries offer most stabilizing effect against the fluid motion and the 

least suppression is offered by free-free boundaries [24]. 

     It is known from thermodynamics that the relaxation time and consequently the parameter C  are positive 

quantities. It has been established that oscillatory convection occurs only for C  above a threshold value and 

since the C  values encountered with laboratory fluids appear well below this threshold it is advantageous to 

concentrate on stationary convection. The thermal Rayleigh number R , characterizing the stability of the 

system, is calculated as a function of the magnetic and non-magnetic parameters. The role of various magnetic 

and non-magnetic properties and their mutual interplay for the instability is examined. The values of the 

parameters arising in the study are fairly standard and are experimentally relevant [12, 18, 22]. Neutral stability 

curves in the  ,R a  plane are plotted for different values of the governing parameters. The coordinates of the 

lowest point on these curves designate the critical values of R  and a . The fixed values of C , 3M , 1Da  and 

  are taken to be 0.001, 1, 5 and 3 respectively.        

     The dependence of critical thermal Rayleigh number cR
 
on the magnetic Rayleigh number N

 
for different 

values of C
 
and for fixed values of 3M , 1Da  and   is sketched in Fig. 2. The magnetic Rayleigh number N   

is a ratio of the magnetic to dissipative forces. It is found that cR  decreases monotonically with an increase in 

both N
 
and C  indicating that both N

 
and C

 
cause ferroconvection to occur at lower value of cR . As a result, 

the two physical mechanisms, viz., second sound and magnetic mechanism have destabilising effect on the 

system. In other words, the presence of magnetic field and second sound facilitates heat transfer more 

effectively and hence hastens the onset of Darcy-Brinkman ferroconvection. It is interesting to note that the 

effect of C  is to reinforce the destabilising effect of N  and vice versa. The reason for the destabilizing effect of 



Gravitational Instability in a Ferromagnetic Fluid Saturated Porous Medium with Non-Classical  

www.iosrjournals.org                                                             14 | Page 

C  is that the energy equation considered is effectively a damped wave equation and is, therefore, hyperbolic 

rather than parabolic. As for the destabilizing effect of N , since the external magnetic field induces 

magnetization in the ferromagnetic fluid and magnetization is a function of both magnetic field and temperature, 
the applied temperature causes a spatial variation in the magnetization, which is the driving force causing the 

convection. For small temperature gradients the magnetic forces induced by the temperature gradient cannot 

overcome the viscous and thermal dissipation and the layer remains quiescent. When the temperature gradient is 

sufficiently large, fluid motion occurs. It is established that the magnetic mechanism predominates over the 

buoyancy mechanism in thin fluid layers [2]. 

     In Fig. 3, the variation of critical thermal Rayleigh number cR
 
with magnetic Rayleigh number N  for 

different values of the magnetization parameter 3M
 
and for fixed values of C , 

1Da  and   is shown. The 

parameter 3M  represents the departure of the magnetic equation of state from linearity. We see that the effect of 

increasing 3M  
 
is to decrease cR  monotonically. Thus the threshold of ferroconvection in a porous layer with 

second sound is hastened as the magnetic equation of state becomes more and more nonlinear. Also, the 

destabilizing effect of 3M  is almost insignificant when N  is small. 

     The effect of porous parameters 1Da  and   on the onset of ferroconvection is depicted in Figs. 4 and 5.                 

It is clear that the onset of ferroconvection is delayed when both 1Da  and   are increased. This may be 

attributed to the fact that increase in 1Da  amounts to decreasing the permeability of the porous medium which 

in turn retards the fluid flow. On the other hand, it is advantageous to note that the Brinkman model rests on an 

effective viscosity f  different from the fluid viscosity f  designated through the Brinkman number  .             

So increasing   amounts to increasing the viscous effect which in turn retards the fluid flow. Therefore more 

heating is required to set off ferroconvection in the presence of Darcy-Brinkman porous medium. It is striking to 

note that the ferrofluid layer is destabilized slightly through the magnetic mechanism when both 1Da  and   

are large. 

     The effect of N , 3M , C , 1Da  and   on the size of the convection cell is displayed in Figs. 6 through 9. 

The dimensionless wavenumber a  is the characteristic of the cell shape and size. A close examination of these 

figures reveals that ca  increases with an increase in N , C  and 1Da , and decreases with increasing 3M  and 

  implying that the effect of N , C  and 1Da  is to contract the convection cell size and that of 3M  and   is 

to enlarge the size of convection cell. Thus all the parameters of the study have a say on the aspect ratio of the 

convection cell with the effect of 1Da  and   being most significant. In the light of the Cattaneo law being a 

possible mechanism for heat transfer in ferrofluids, we believe that the results of the study at hand might be 

exploited in heat transfer devices wherein magnetic fluids play a prominent role and that the results presented 

here may have some bearing on a suitable laboratory experiment. 

 

V.     FIGURES 

 
Fig. 2  Variation of cR  with N  for different values of the Cattaneo number C . 
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Fig. 3  Variation of cR  with N  for different values of the magnetization parameter 3M . 

 

Fig. 4  Variation of cR  with N  for different values of inverse Darcy number 1Da . 

 
Fig. 5  Variation of cR  with N  for different values of Brinkman number  . 
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Fig. 6  Variation of ca  with N  for different values of the Cattaneo number C . 

 
Fig. 7  Variation of ca  with N  for different values of the magnetization parameter 3M . 

 

 

Fig. 8  Variation of ca  with N  for different values of inverse Darcy number 1Da . 
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Fig. 9  Variation of ca  with N  for different values of Brinkman number  . 

 

VI.     CONCLUSIONS 
The effect of non-classical heat conduction on the onset of Rayleigh-Bénard instability in a horizontal 

layer of Darcy-Brinkman porous medium saturated with a Boussinesq-Cattaneo-ferromagnetic liquid subject to 

the simultaneous action of a vertical magnetic field and a vertical temperature gradient is investigated 

analytically by the method of small perturbation. A linearized convective instability analysis is performed when 

both magnetic and buoyancy mechanisms are operative. Inasmuch as the principle of exchange of stabilities is 

valid for the study at hand, instability criteria are determined in terms of the stationary Rayleigh number R, the 

wavenumber a , the Cattaneo number C and magnetic and porous parameters. The following conclusions are 

drawn: 

(i) The Cattaneo heat flux law has a pronounced effect on ferroconvection in a sparsely distributed porous 

layer. 

(ii) The Rayleigh-Bénard problem for a Maxwell-Cattaneo ferromagnetic fluid is always less stable than that 

with Fourier magnetic fluid. 
(iii) In the presence of second sound, the flow is appreciably influenced by magnetic and porous effects. 

(iv) The threshold of the stationary instability decreases with increase in the magnetic field strength and the 

Cattaneo number. Thus the effect of magnetic forces and second sound is to destabilize the system and 

both cause the convective motion to occur at shorter wavelengths. 

(v) There is no appreciable impact of 3M
 
on the stability of the system when N  is fairly small. 

(vi) The stability of the ferromagnetic fluid is reinforced with an increase in the value of the inverse Darcy 

number and the Brinkman number. 

(vii) The critical wavenumber increases with an increase in N  and C . Thus their effect is to contract the size 

of convection cells. 

(viii) The aspect ratio of convection cell is most sensitive to the effect of porous medium. 
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