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Implementation of the Finite Element Technique to the Optimal
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Abstract: This research computes the optimal control and state of the one-dimentional energized wave
equation using the Finite Element Technique ( FET). The paper has to do with all the vital computational
elements as in the derivation of the finite element algorithm . With these recalls, various numerical optimal
controls and states were considered at various levels of discretization.
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I.  Introduction

In theoretical physics and engineering, partial differential equations generally arise from the
mathematical formulation of real life physical problems as in Raisinghania [1]. The applications of optimization
methods to equations in mathematical physics have been considered by Reju etal [2]. They apply the extended
conjugate gradient method to the control problems of diffusion, fluid dynamics and wave propagation. However,
there are other methods applied to optimal control of wave propagation with energy effect. In this research
work, the Finite Element Technique is used to solve the optimal control problem of wave equation with energy
effects in one dimension following the algorithms in Bawa[3].

I1.  One Dimensional Energized Wave Equation
Cases of manageable energy losses can be modeled as a combination of the wave and energy equations
simply, this is considered as wave equation with energy effect or energized wave equation. According to pain
[4], the one-dimensional wave equation with energy effect is given by:

z(xt) 1 8%z(xt)  10z(x)
o “C o td a 2.1)
Where C and d are the material property Constants namely the wave velocity and energy respectively.
The wave part is:

dz(xt) 1 8%z(x.t)
o T o (2.2)

And the energy part is:

oz(x,t) 1 oz(x.t)

o ~d at (2.3)
Our optimization problem under consideration is:
11
Min | [zu] “Min [ [ 02 (x,t)+ 22(x, 1)} dxat 2.4)
00
Subject to:

azgg;,t) .\ azgtct) _ 82;2;0 Fuxt) (2.5)

With boundary and initial conditions:

Z(0,)=z(1,Y) =0; 0<t<1

Z (x,0) = Z,(x); 0<x<1
Where u(x,t) is the Control or input function.
Writing the Hamiltonian for (2.4) and (2.5), similar to that of Singh and Tiltli
[5], we have:
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2
H= 22 (x1) + Uy + 0T [ 2::2"[ Fu(x] 2.6)

Where AT =4T (1)
Setting:

2
Flz(x,t),u(x,t)] = ng’é—tz +U(xt)

And:

glz(x,),u(x,n] = 2% (x,t) + u?(x,t), Consequently, we have the first order necessary conditions for
optimization as:

oz(x) _ OH(x.Y) 822(x 1)

ot on 2 Hulx) =Flz(xhux.b)] (2.7)
% - 2_1;1 = [Zg 5%2 -2z (x,1) (2.8)
e A
o )] *Ta_g" 2.9)
Where:

H=g(zu) +A" (t) f(z,u)
Equation (2.9) gives:
A+2u(xt)=0 (2.10)
or A=-2u (X,t)

using equations (2.8) and (2.10), gives:
_20u(tx)
at =T ek,
Which implies that:
Z(xt) = - M (2.11)

Equation (2.11) is here of physical significance under the conditions for optimality and it expresses the
relationship between the temperature and the heat source at any point x of the unit propagating rod of our
diffused model. Moreover, (2.11) is in this case treated as a differential transform of any previous known
solution of the wave diffusion equation.

Assuming that (2.11) admits the fourier solutions proposed by Duchateau and zachmann [6]:.
Z(x,t) = X2, o, (t)sinmix
u(x,t) = 272, U;(t)sinmix (2.12)

We then have our new solution as:
? oo L
Z(x, t) = o[22, U; (O)sinmix]
=224 Uy (t)sinmix (2.13)

It follows that:

< (1) = U (@)
And:

Z, (x,t) = z Uy (t)sinmix
Zy (x,t) = Zl ? 1 Uir (t)sinmix (2.14)
Zy (x,t) = ZLZ(—nZ)UL-t (t)sinmix

i=1
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Z (x,0) = Z U, (0)sinmix
i=1
From our constrained equations:
Zo (o, )+ Z, (x,t) = Z,, (x,t) + U(x, t)
This implies that:

Z Uy (t)sinmix + Z U, (t)sinmix
i=1 i=1

= Z i2(—m?)U, (t)sinmix + Z U; (t)sinmix
i=1 i=1
Thus we have:
Uir = Uiee — i?m? Ui + U;
Now, the problem can be put in the form:

1 1
Minf (U, + Uy + .. +U,]dt + j (Ui + Uy + o 4U, ldt +
0 0

1
Jo Wi + Uz + o+ U Idt (2.15)
Subject to the set of equations below:
U = — Uree — > 1203, + U,
Upr = — Upye — 12 22Uy, + U,
Upeer = = Upye — 12 0?0y + U, (2.16)

I11.  The Discretization and Interpolation Model .

Solving system (2.16) using the finite element technique as applied in Rao [7], we discretize the
domain (t = 0 to 1) with elements of equal length. For the interpolation model, we consider a one-dimensional (
line segment) of length L with two nodes, one at each end. Let the nodes be denoted by i and j and the nodal
values of the field variable U by U; and U;

The variation of U inside the element is assumed to be linear as:

U(t) = o 4o, t 3.1
Where o<; and o, are the unknown coefficients.
Using the nodal conditions:

Ult)= U;att=t;

Ut)=Uatt=¢
From equation (3.1):

U = x4+, t; (3.2)
Solving equations (3.2) and (3.3) gives:
Uit —Ut;
o=
L
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_ -y "
= L (3.4)
L=t; — ¢
Where t; and t; denote the global co-ordinates of nodes i and j respectively.
Substituting (3. 4) in (3.1) gives:
U = N (O U; +N, (O G
=[N®IU® (3.5)
Where:
ti—t —t;
no=(5) vo=()
U:
U = {Ul} Vector of nodal unknowns of element e
)

IV.  Element Characteristics Matrices and Vectors
Equation (2.16) is the same as:
BUp _0%Un 5 5 Up
a3 a2 mn at_+l_J" ]
The necessary Conditions for optlmallty lead to the functional:
Minimize | == f[ [aatuz" [aU"] + 22 n?U, — Un ]dt (4.1)
The element characteristic matrices and vectors can be identified by expressing the functional I in matrix form.
We express the functional | as a sum of E elemental quantities 1(®) as
E

I= Z 1
e=1
Where:

1 pt; 9%u, 2 Uy, 2
19 =300 |- [5] + [52] +2n niv, - un?] e (42)

at?

Substituting (3.5) in (4.2) gives:

1@ =
o [ B 0 2 20 s, -
UﬂeT/VT/V Un—edt (4.3)

For the stationeries of I, we use the necessary conditions:

E
al a1
W = 6U = 0 (44)

e=1

i=1,2...M
Where E is the number of elements and M is the number of nodal degrees of freedom. Equation (4.4) can also be
expressed as:

a1
Zawe)

That is:
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E 92N]" [92N aN1’ [ON

gl ==y ~® [_] [—]U -(e) 202[N1T
Zf [6t2][6t2]” ") o] + rniN]
e=1"ti

~[NT' [N U,
This implies that:

E

E
e —(e) — -
Zl[k( v, ;P (e)

e=

dt=0

(4.5)

Where K @ is the element characteristic matrix and P~( is the element characteristic vector.

5. Assemblage of Element characteristic matrices and vectors.

We assemble the element characteristic matrices and vectors and obtain the overall equations as:

[K]Unq =P

CaseE=2

1[-22 25 0
=|25 -44 25

Un1 2n? 1
Un, | = 2
0 25 =22

Un

w

Case E=3

-5255 0 0 If 1|
1|55-104 55 0 |{Un|
18| 0 55 —104 55 ||U,, |

0 o 55 =521y |

Case E=4

-94 97 0 0

Case E =5

—-148 151 O 0 0
151 =296 151 0 0
0 151 -296151 O
0 0 151 —296 151
0
0

30
0 0 151 —296 151
0 0 0 151 —148

[
N
=

I

|

R NNNDN -
e

“Case E =6

—-214 217 O 0

0
217 —428217 0 0
1| 0 217 -428217 o0

36 8 0 217 —428 0
0
0

oSO O

o
SO OO O

0 0 217 217 217
0 0 0 —428-428 217
0 0 0 217 217 —428

(5.1)
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Case E =7
U,
(—292295 0 0 O 0 0 0 {fy 11
295584295 0 0 0 0 0 [, 2
0 295-584295 0 0 0 O n3 2
1l 0 0 205-584295 0 0 0 |{Un|_=2?|2
2 0 0 0 295-584295 0 0 liU, 14 |2
0 0 0 0 295-584295 0 U, 2
0 0 0 0 0 295-584295 (|, 2
0 0 0 0 0 0 295-2924"" -1-
_Uns_
Case E =8
U,
(—382385 0 0 0 0 0 0 0 ju, 11
385-764385 0 0 0 0 0 0 [y 2
0 385-76438 0 0 0 0 O n3 2
1 0 0 385-764385 0 0 0 0 |{Uny .2
=] 0 0 0 385-764385 0 0 0 [|Uy|=""|2
0 0 0 0 385-764385 0 0 iU, 2
0 0 0 0 0 385-764385 0 |y 2
0 0 O 0 0 0 385-7642385]| ™ 2
o 0 0 0 0 o0 o0 385 —382)Un 1
L[ Ung
Case E =9
_Unl_
—484487 0 0 0 0 0 0 0 0 7| U, 19
487 —968487 0 0 0 0 0 0 0 |y, 2
0 487-968487 0 0 0 0 0 0 ||, 2
0O 0 487-968487 0 0 0 0 O 4 . 212
1i 0 0 o0 487-968487 0 0 0 o0 (|Uns|_mn02
54 0 0 O 0 487 -968487 0 0 0 [lUy 18 |2
0 0 0 0 0 487-968487 0 0 [y, 2
0 0 0 0O 0 0 487 -968487 0 u 2
0 0 0 0 0 0 0 487 —968 487|l“ns 2
0 0 0 0 0 0 0 0 487 —484lUn -1
_Unlo_
Case E =10
U,
'—598 601 0 0 0 0 0 0 0 0 0 1| Un, 1
601 —1196 601 0 0 0 0 0 0 0 o (lu, 2
0 601 —1196 601 0 0 0 0 0 0 0 (ly 2
0 0 601 —1196 601 0 0 0 0 0 0 U"‘* 2
11 0 0 0 601 —1196 601 0 0 0 0 0 ns | 2212
Zol © 0 0 0 601 —1196 601 0 0 0 0 [IUngl= TRE
0 0 0 0 0 601 —1196 601 0 0 o (lu, 2
0 0 0 0 0 0 601 —1196 601 0 0 U 2
0 0 0 0 0 0 0 601 —1196 601 0 " 2
0 0 0 0 0 0 0 0 601 —1196 601 || Uno 2
0 0 0 0 0 0 0 0 0 601 —5981|Uy,, -1
Uy, ]

V.  Computational Results.
We can solve the system equations (5.1) after incorporating the boundary conditions:

CaseE=2

Un, 0 Zn, 0
Un, =[—0.1363636n2nzl Zy, =[0.2727273n2nzl
U, 0 Z, 0

3 3
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Case E =3
fUnﬂ 0 anl] 0
|Un2| —0.1224497%n? |Zn2|_ 0.3673471%
u, 0. 1224491r2n2 Z |~ 0
3 3
Un, Zn, 0
CaseE=4
sl I | ) B S
|Unz| [—0.103473312n || nz| | 0.413893272n? |
|Uns | = | -0.138690572n? | [Zny | =] 0.1408688mn? |
[UM J [ 0. 10347337t2n2J [zm J l 0. 14086887t2n2J
Up, Zp,
CaseE=5
ol 0 TE S
n2| | —8.857476E — 0212n? | |%m2| | 0.4413738n2n? |
U1 | —0.1333068n2n2 [{Zns | 022516027t2n2 |
Up,| ~| —01333068n%n? 11Z,,|" | |
U, | _8.857476F — 02mn?| z, 022516027t n?
U | |78 8S74TER = 02 |||~ |
LY ng L™ Ne
Case E=6
U, 7 7z
vl [ 0 Nzt T 1
nzl | —7.65768E — 02m2n? | |“n2] | 045946097t n? |
Us! | —0.1233866m2n2 | 1%ns] | 0.2808586m2n? |
U, i=| —0.13913572n% ||Z,|=]| 0.0944904n n2 I
U, | ~0.1233866m%n? | 7, | ~0.09449047%n
Uy, l—7.657682E—02n2n2J Z| | 0.28085867r2n2
0 0
_Un7_ _Zn7_
CaseE=7
'Zn{ 0 '?z{ 0
U"Z —6.746464E — 0212n? Z"Z 0.4772524m%n?
n3 —0.113218172n? n3 0.3202742m%n?
Ut | —0.136329972n2 Zn,1 | 0.1617826m2n2
U | | —0.136329972n? Zo |~ 0
Up, —0.113218172n2 Z,,| |—0.1617826m%n?
U —6.746464E — 022n?| | , —0.32027421%n?
ny ny
0 0
U, (Z,,
CaseE=8
U, ] . Zn, .
U A
"2 —0.060221372n%||."? 0.4817704m2%n?
Unsl 1-0.1039197r2n2| %ns] | 0.349587212n?
Unys{  [=0.1304141712n2 | [Zns 0.2119552m2n?
Upe | = |—0.139291722n2 | [ Zns = | 0.071020872n?
Upg —0.1304141m*n?| | Z,,, —0.0710208m2n?
U, —0.1039197m%n?| | 7, —0.211955272n?
u. | |-0.0602213m2n2 ||, 7| |-0.3495872n%n?
Ung 0 an 0
LY g L &ng
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Case E=9
— Unl1 - —an -
U 0 11z 0
" 5.434729E — 02m2n2 || ., 2 22
U —5. —027“n 7 0.4891257m“n
"3 —9.570468E — 02m2n?|| "3 0.3722166m%n?
Un, —0.1235627m2n? || %na 0.250722172n?
Us | | —0.137578m%n? Zns | _ | 0.12613771%n2
Uy, | 71 —0.137578712n2 Zng | 0
U,, —0.123562712n? Z,, —0.12613771%n?
U —9.570468E — 02n2n?| | » —0.25072217%n?
U”8 —5.434729E — 027%n? Z"S —0.3722166m2n?
ng 0 ng 0
—Un10— -Z"10
Case E=10
-7
- Un1 - 0 Z:l 0
Un, —4.949809E — 0212n2 || ;7 0.4949807%n?
Un, —8.851864F — 02m%n? 2”3 0.390205172n?
Uy, —0.1166721m2n? n4 0.2815346m%n?
U, —0.1336774m2n? Zns 0.170053m2n?
v =1 —0.1393648m%n? Zy, | =| 0.05687472n2
n6 —0.133774n2n? Z, —0.056874m2n?
Un, ~0.1166721n2n2 |17 "1 | ~0.17005372n?
Ung —8.851864EF — 02m?n? | —0.2815346m2n?
Un, —4.949808E — 02m%n? 7 —0.390205172n?
»Unnf 0 n10 0
’anl
VI. Conclusion

The research work finds the expressions for the optimal state Z(x,y) and the optimal control U(x,y) for

the one dimensional wave equation with energy effect. The controls are symmetrical about their minimum
values and these values get smaller as the number of elements increases. Two and three elements discretisation

maintain only positive states with the latter having the same value at Z, .2, and z, -No other pair exhibits

similar behavior. The analytical solutions would enhance further computational processes using the FET
towards the derivation of the optimal controls for states at various spatial planes.
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