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Abstract: Many infectious diseases including malaria are preventable, yet they remain endemic in many 

communities due to lack of proper, adequate and timely control policies. Strategies for controlling the spread of 

any infectious disease include a rapid reduction in both the infected populations (if a cure is available) as well 

as a rapid reduction in the susceptible class if a vaccine is available. For diseases like malaria where a vaccine 

has recently been developed, it therefore makes it possible to reduce the susceptible class through vaccination. 

In this study, we have modified the Tumwiine et al. (2007) mathematical model for the transmission of malaria 

by including a vaccination parameter. We have shown that the model has a unique disease-free equilibrium 

which is locally asymptotically stable, if  oR   1, where oR  is a parameter which depends on the given model 

parameters. The analytical solution clearly shows that, with a proper combination of treatment and vaccination, 

malaria can be eradicated from the community. 

 Keywords: disease-free equilibrium points, Infectious disease, malaria, reproduction number, stability 

 

I. Introduction 

Malaria, derived from male aria (Italian for “bad air”) and formerly called ague or marsh fever in 

English, is an infectious disease. Malaria is the common name for diseases caused by single-celled parasites of 

the genus Plasmodium. Among the parasites of the genus Plasmodium four species have been identified which 

can cause disease in humans. These include: Plasmodium falciparum, Plasmodium vivax, Plasmodium malaria 

and Plasmodium ovale. Of these, Plasmodium falciparum is of greatest risk to non-immune humans. The 

Plasmodium falciparum variety of parasites account for 80% of cases and 90% off deaths (Kakkilaya, 2003). 

Children under the age of five and pregnant women are the most vulnerable to the severe forms of malaria. Each 

year 2-3 million children die from Plasmodium falciparum malaria and up to 500 million people throughout the 

world suffer from malaria clinical disease (Engers and Godal, 1998).  

 

Malaria is spread by the bite of an infected female mosquito, of the genus anopheles each time the 

infected insect takes a blood meal. The symptoms in an infected human include bouts of fever, headache, 

vomiting flu-like, anemia (destroying red blood cell) and malaria can kill by clogging the capillaries that carry 

blood to the brain (cerebral malaria) or other vital organs. On the average the incubation period of Plasmodium 

falciparum is about 12 days in humans. Malaria is endemic to tropical areas where the climatic and weather 

conditions allow continuous breeding of the mosquito. The factors that have influenced the resurgence and 

spread of malaria include: 

 

a. mosquito resistance to the usual insecticides. 

b. resistance of some parasite strains to the commonly used anti malaria drugs  

c. economic factors that influence the financing of malaria control operations. 

 

The WHO revealed that most malaria high-risk areas also located in developing countries where (a) the 

level of education is generally low and (b) drugs can be purchased without prescriptions. A combination of (a) 

and (b) generally results in maladministration of the drugs. 

 

Mosquito control is a speciality in itself and includes the use of anti-malaria vaccines, insecticides, 

insectidide-treated bed nets (ITNs), treatment control of breeding grounds and biological control. Each 

ecological region requires its own individual approach: savannah, primeval forest, agricultural areas with or 

without irrigation systems, the margins of uplands, desert margins and oases, city environments, coastal and 

marsh regions. There are many difficulties: interventions need to be maintained over large areas for very long 

periods of time, mosquitoes quickly become resistant to insecticides, many people will not allow their houses to 

be sprayed, high costs, shortage of staff, ecological collateral damage due to insecticides, political instability 

which interferes with long-term planning. An exclusively technical approach will not be possible without 

simultaneous improvement in the social and economic conditions of the population at risk. 
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Mathematical models play a key role in the control of malaria. Koella and Boete (2002) derived a 

model where humans move through multiple Susceptible Exposed-Infectious-Recovered (SEIR) stages, where a 

history is kept of previous infections. They include a sub model for the mosquito population with subdivisions 

for juveniles and adults. They used the steady state value for the adult mosquito population, from this sub 

model, as the input into their model for malaria transmission. They introduced dependence of the parameters for 

the mosquito population sub model on an environmental parameter (eg. temperature or rainfall) and calculated 

the dependence of the reproductive number, for the full malaria model, on this environmental parameter. 

 

II. Role Of Mathematical Model 

It is important to establish the transmission dynamics of an epidemic in order to understand and predict 

it. Mathematical models are particularly helpful as experimental tools with which to evaluate and compare 

control procedures and preventive strategies, and to investigate the relative effects of various sociological, 

biological and environmental factors on the spread of diseases. These models have played a very important role 

in the history and development of vector-host epidemiology.  

 

Several authors have used mathematical models to analyze the transmission and spread of malaria. 

Mathematical models of malaria transmission that include both mosquito and human populations have been 

reviewed and discussed in detail by various authors. Nedelman (1985), did some further work on malaria model 

of Dietz et al. (1974), and showed that the “vaccination” rate depends on a pseudoequilibrium approximation to 

the differential equation describing the mosquito dynamics in the malaria model. Nedelman surveys various data 

sets to statistically approximate parameters such as inoculation rates, rates of recovery and loss of immunity in 

humans, human-biting rates of mosquitoes and infectivity and susceptibility of humans and mosquitoes. Dietz et 

al. (1974) proposed a model with two different classes of humans: one without immunity to malaria and one 

class with some immunity. As the non-immune class falls sick, some people recover with immunity. The 

immune class can get infected, but does not fall clinically ill and cannot be infectious. The model by Dietz et al. 

(1974) also included super infection, a phenomenon usually associated with macro parasites.  

 

Yang (2000) describes a compartmental model where humans follow an SEIRS-type (with more than 

one immune class for humans) pattern and mosquitoes follow a Susceptible-Exposed-Infectious (SEI) pattern. 

Yang (2000) defines a reproductive number, OR  for this model and shows, through linear stability analysis, 

that the disease-free equilibrium is stable for OR  < 1. He also derived an expression for an endemic equilibrium 

that is biologically relevant only when OR  > 1. He used numerical simulations to support his proposition that 

for OR  > 1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. 

 

Castillo and Ferreira (2000) use the model by Yang (2000) to study the effects of global warming. 

Using the estimated increase in temperature of 1.00C − 3.50C by the year 2100, they show that it is possible in 

some areas of the world for OR  to increase above 1; for areas to change from a stable disease-free endemic 

state to one with low levels of endemicity and for other areas to change from low levels of endemicity to high 

levels. They, however, conclude that economic and social effects are still more important than temperature 

effects and a good health care system with good malaria control techniques can overcome the negative effects of 

an increase in temperature. 

 

The model for malaria transmission that we modified is an extension of the equations introduced by 

Tunwiine et al. (2007). In the Tunwiine model, humans follow an SIRS-like pattern and mosquitoes follow a SI 

pattern, similar to that described by Yang (2000) but with only one immune class for humans. Humans move 

from the susceptible to the infected class at some probability when they come into contact with an infectious 

mosquito, as in conventional SIRS models. However, infectious people can then recover with, or without, a gain 

in immunity; and either return to the susceptible class, or move to the recovered class. A new feature of this 

model is that although individuals in the recovered class are assumed to be “immune”, in the sense that they do 

not suffer from serious illness and do not contract clinical malaria, they still have low levels of Plasmodium in 

their blood stream and can pass the infection to susceptible mosquitoes. After some period of time these 

recovered individuals return to the susceptible class. Susceptible mosquitoes get infected and move to the 

infected class, at some probability when they come into contact with either infectious humans or recovered 

humans (albeit at a much lower probability). Both humans and mosquitoes leave the population through a 

density dependent natural death rate. This allows the model to account for changing human and mosquito 

populations. Variations in mosquito populations are crucial to the dynamics of malaria, and constant population 
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models do not account for this. The model also includes human disease-induced death as mortality for malaria in 

areas of high transmission can be high, especially in infants. In the modified model, we aim to capture some of 

the more important aspects of this epidemiology while still keeping it mathematically tractable.  One of the 

major important factors that we include in the existing model is vaccination in order to determine its impact as a 

control measure for the spread of malaria. 

 

 

2.1 DEFINITION OF TERMS 

Definition 2.1.1 Susceptibles: The number of individuals who can be infected but have not yet contracted the 

malaria but may contract it if exposed to its mode of transmission.  

Definition 2.1.2 Infected: The number of individuals who have been infected of malaria fever. 

Definition 2.1.3 Recovered:  The number of individuals who have recovered after treatment. 

Definition 2.1.4 OR : Basic reproduction number: The expected number of secondary cases produced by a 

single (typical) infection in a completely susceptible population 

Definition 2.1.5 : Susceptible, Infected, Recovered 

Definition 2.1.6 WHO: World Health Organization. 

Definition 2.1.7 Vaccination: The introduction of a vaccine or serum into a living organism to confer 

immunity. 

 

III. Parameters And Terms Of The Model 

 

HS (t)  the number of susceptible human host at time t 

HI (t)  the number of infected human host at time t 

HR (t)  the number of  partially immune human host at time t 

VS (t)  the number of susceptible mosquito vector at time t 

VI (t)  the number of infected mosquito vectors at time t 

H

V

N

N
m   the number of female mosquitoes per human host 

 a the average daily biting rate on man by a single mosquito (infection rate) 

 b the proportion of bites on man by a single mosquito that produce an infection 

 c  the probability that a mosquito becomes infectious 

    the per capita rate of loss of immunity in human host 

 r  the rate at which human host acquire immunity 

   the per capita death rate of infected human hosts due to the disease 

 v  the rate of recovery of human host from the disease 

h   the per capita natural birth rate of humans 

v   the per capita natural birth rate of mosquitoes 

h   the per capita natural death rate of humans 

v   the per capita natural death rate of the mosquitoes 

   the „vaccination rate‟ on human 
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3.1 EQUATIONS OF THE MODEL 

The model formulated by Tumwiine et al. (2007) is giving as 

 

HhHH

H

VH

Hh
H SRvI

N

IabS
N

dt

dS
       (3.1.1) 

HhHHH

H

VHH IIrIvI
N

IabS

dt

dI
        (3.1.2) 

HhHH
H RRrI

dt

dR
          (3.1.3) 

Vv

H

HV

Vv

V S
N

IacS
N

dt

dS
         (3.1.4) 

Vv

H

HVV I
N

IacS

dt

dI
         (3.1.5) 

 

We assumed that all infected human who recovered are moved to the recovered class and vaccinated human 

have temporary immunity that expires over time and again become susceptible, hence by including a 

vaccination parameter, “ ” the above model gives the modified model below 

 

HHhH

H

VH

Hh
H SSR

N

IabS
N

dt

dS
       (3.1.6) 

HhHH

H

VHH IIrI
N

IabS

dt

dI
         (3.1.7) 

HHhHH
H SRRrI

dt

dR
         (3.1.8) 

Vv

H

HV

Vv

V S
N

IacS
N

dt

dS
         (3.1.9) 

Vv

H

HVV I
N

IacS

dt

dI
                      (3.1.10) 

 

The modified model equations in proportion 

We recall from the previous chapter the equations for the actual population.  

 

HHhH

H

VH

Hh
H SSR

N

IabS
N

dt

dS
       (3.1.6) 

HhHH

H

VHH IIrI
N

IabS

dt

dI
         (3.1.7) 

HHhHH
H SRRrI

dt

dR
         (3.1.8) 

Vv

H

HV

Vv

V S
N

IacS
N

dt

dS
         (3.1.9) 

Vv

H

HVV I
N

IacS

dt

dI
                     (3.1.10) 

         



Modeling The Spread Of Malaria 

www.iosrjournals.org                                                             61 | Page 

The total population sizes HN  and VN  can be determined by HS + HI + HR = HN  and VS + VI = VN  or 

from the differential equations 

HHhh
H IN

dt

dN
  )(                (3.1.11) 

  

and 

 

VVV
V N

dt

dN
)(            (3.1.12) 

 

which are derived by adding equation (3.1.6) – (3.1.8) for the human population and (3.1.9) – (3.1.10) for the 

mosquito vector population 

In the model, the term 

H

VH

N

IabS denotes the rate at which the human hosts HS get infected by infected 

mosquitoes VI and 

H

HV

N

IacS
refers to the rate at which the susceptible mosquitoes VS are infected by infected 

human hosts HI . Since it is easier to analyze our model in terms of proportions of quantities instead of actual 

proportions, we make the transformation 

H

H
h

N

S
s  , 

H

H
h

N

I
i  , 

H

H
h

N

R
r  , 

V

V
v

N

S
s  and 

V

V

v
N

I
i   in the 

classes HS , HI , HR , VS  and VI  in the population respectively and 

H

V

N

N
m  . This is done by 

differentiating the fractions with respect to time t  and simplifying as follows: 

 

 











dt

dN
s

dt

dS

Ndt

ds H
h

H

H

h 1
 

       =   hhhhhhhhvhh isssriabms    

       = hhhhhhvhh isssriabms      

       =   hhhhvhhh issriabmss  1       (3.1.13) 

 











dt

dN
i

dt

dI

Ndt

di H
h

H

H

h 1
 

       =   hhhhhhhhhvh iiiiriiabms       

       =
2

hhhhhhvh iiiriiabms        

       =   2

hhhvh iiriabms          (3.1.14) 

 

Similarly, 


dt

drh   hhhhhh irsrri                      (3.1.15) 

dt

dsv
 =   vhvv sacis 1                     (3.1.16) 

dt

div
 = vvhv iiacs                                    (3.1.17)  
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subject to the restriction 1 hhh ris  and 1 vv is , we note that the population sizes  tN H  and 

 tNV  do not appear in the system. Therefore, using the relations hhh isr  1  and vv is  1  lead to 

studying the system of differential equations. 


dt

dsh     hhhhhvhhh issisiabmss   11                 (3.1.18) 

dt

dih
=   2

hhhvh iiriabms                      (3.1.19) 

dt

div
=   vvvh iiaci 1                     (3.1.20) 

 

in the feasible region (i.e. where the model makes biological sense) 

 

Now we intend to analyze and investigate the existence and stability of the associated equilibrium points. 

Assuming that all the parameters are non-negative, and solving for the equilibrium points by setting the right-

hand sides of equation (3.1.18) - (3.1.20) to zero, the system takes the form as shown: 

 

    011  

hhhhhvhhh issisiabmss                   (3.1.21) 

  02  

hhhvh iiriabms                     (3.1.22) 

  01  

vvvh iiaci                       (3.1.23) 

 

In the absence of infection, 0 hv ii ,  so that equation (3.1.21) yields 

 

0 

hhhhh sss   

   

hhh s  










h

h
hs  

 

Hence the model has a steady state, 0E called the disease-free equilibrium points, where  

0E = (








h

h , 0, 0) 

 

Stability of the Disease Free Equilibrium Point 

To establish the stability of this equilibrium, the Jacobian matrix of equation (3.1.21)–(3.1.23) is computed and 

evaluated at 0E . 

 

Let 1F       hhhhhvhhh issisiabmss  11  

      2F   2  hhhvh iiriabms   

       3F     vvvh iiaci 1   

 

  


hvhhvh

h

iabmiiabmi
ds

F
1  




h

h

s
di

F
1

 




h

v

abms
di

F1
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


v

h

abmi
ds

F2
     


hhhh

h

irir
di

F
 222    




h

v

abms
di

F2
 

 

03 


hds

F
  




v

h

aciac
di

F3   
vh

v

aci
di

F


 3  

 

 

At the steady states of the model, the Jacobian matrix at E is given by 

 

 

 

  




























hvv

hhTv

hhhvh

E

aciiac

abmsiQabmi

abmssiabmi

J







10

2                (3.1.24) 

 

where  hT rQ    

 

Evaluating the Jacobian in equation (3.1.24) at 0E  gives 

 

 






























































v

h

h
T

h

h

h

h
h

E

ac

abmQ

abm

J
















0

0
0

 

 

To get the eigenvalues, we obtain the characteristic equation 

Thus, 

 

 

qac

abmqQ

abmq

qIJ

v

h

h
T

h

h

h

h

h

EO

























































0

0 =0 

 

       =  
qac

abmqQ
q

v

h

h

T
h



























 =0                  

 

 

 

which yields 
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  qh    
 




















h

h
vTvT

bcma
QqQq

2
2

= 0 

 

 

 

 

 

The eigenvalues of the characteristic equation are given by 

 

   h ,

   

2

4 22





























h

h
VTVTvT bmcaQQQ

 

 

i.e    h , 
     

2

14
2

OVTVTvT RQQQ  
 

 

 

where, 

VT

h

h

o
Q

bmca

R




















2

, is called the basic reproduction number. 

 

 

The eigenvalues are hereby analysed 

 

 

i.e     hq1  < 0 
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If 01  OR , 
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Therefore, 2q 0 and 3q 0 thus establishing 1q 0, 2q 0, 3q 0 

 

Theorem 

Giving the system of equation in (3.1.21)–(3.1.23) and that vhr  ,,,,  and 1OR , then the disease-free 

equilibrium state is locally and asymptotically stable. 
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IV. Conclusion 

This study modified a model of malaria formulated by Tumwiine et al. (2007) by including a 

vaccination parameter,  . Analytical study was carried out on both models using the method of linearized 

stability and the results showed that the disease-free equilibrium points are locally asymptotically stable for the 

modified model. The analytical results on the modified models revealed that eradication is possible with a 

combination of both treatment and vaccination as a new control strategy. 

 

 

 

References 
[1] Castillo and Ferreira (2000) The biology of plasmodium falcparum transmission stages. Parasitology, 116(Suppl): S95-S109. 

[2] Dietz, Molineaux and Thomas (1974) Development of a new version of the Liverpool malaria model. Oxford University Press, Oxford. 

[3] Engers, H.D. and Godal T, (1998). Malaria Vaccine Development; Current Status.    Parasitol, Today. Trend. Parasitol., 14: 56-64. 
[4] Kakkilaya, B. S. (2003). Rapid diagnosis of malaria, lab medicine, 8(34), 602-608  

[5] Koella J. C, Boete. C (2002) A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in 

malaria control 14(2), pp:56-64 

[6] Nedelman J. (1985) Estimation for a model of multiple malaria infections. Phil. Trans. R. Soc. London. 65(4),  291: 451-524 

[7] Tumwiine, Mugisha J. Y. T and Lubobi L. S (2007). Applied mathematics and computation. 189(2007)  pp1953-1965. 

[8] Yang Hyun. M, (2000) Mapping and predicting malaria transmission in the People’s Republic of China, using intergrated biology-
driven and statistical models. Phil. Trans. R. Soc. London, pp: 291: 451-524. 


