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ABSTRACT  In this paper, we obtain some results on fixed points for expansion mappings in 

D-metric and Tri D-metric spaces, introduced by Dhage [1] .Our results includes several 

fixed point results in ordinary metric spaces as special cases on the line of Maia [5]. 
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1. INTRODUCTION: 

Motivated by the measure of nearness, the concept of a D-metric space introduced by 

Dhage [1] is as follows: 

              A nonempty set X  together with a function   ,0: XXX  , is called a D-

metric space with a D-metric  , denoted by     if , ,X  satisfies the following properties: 

    zyxzyxi  0,,        (Coincidence)  for all  Xzyx ,,

      zyxzyxii ,,,,        (Symmetry) Where   is a permutation function.

         zyazaxayxzyxiii ,,,,,,,,     for all Xazyx ,,, . (Tetrahedral 

inequality) 

       A sequence   Xxn  , is said to be D-converges to a point Xx if 

  .0,,lim ,  xxx nmnm  Similarly , a sequence   Xxn  , is called D-Cauchy if 

  0,,lim ,,  pnmpnm xxx . A complete D-metric space is one in which every D-Cauchy 

sequence converges to a point in it. A subset S of a D-metric space X  is called bounded, if 

there exists a constant 0K  , such that   Kzyx ,, for all Szyx ,, . The infimum of all 

such k  is called the diameter of S and is denoted by  S . 

          Let XXf :  , then the orbit of f at a point Xx is a set in X , defined by

   ,.....,, 2 xffxxxO f  . Again a D-metric space is called f-orbitally bounded if there exists a 

constant 0M  such that   Mzyx ,, for all  xOzyx f,, .A D-metric space is called f-

orbitally complete if every D-Cauchy sequence in  xO f  converges to a point in X  . 

         It is known that the D-metric   is a continuous function on 3X  in the topology of D-

metric convergence which is Hausdorff, see Dhage [2]. 

         In 1976, Rosenholtz [7] discussed local expansion mappings. Let  dX , be an ordinary 

metric space. Then a mapping XXT :  , expansive on a subset XB  of , if 

   yxdTyTxd ,,   for all yxByx   with ,  . 

T is a Local expansion if every point in T has a neighbourhood B on which T  is expansive. 

       In fact Rosenholtz proved, “If   dX ,  be a complete metric space and XXT : be a 

self map of X onto itself satisfying;  

    1  and    with  , allfor   ,,   yxXyxyxdTyTxd  . Then T  has a fixed point in X ”.  

         We need the following D-Cauchy principle developed by Dhage [3]. 
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Lemma 1: (D-Cauchy principle): Let  nx  be bounded sequence with D-bound K , 

satisfying: 

 1.1.1        10  where,  with , allfor    , ,, 1   npNpnKyyy n

pnn  . Then  ny  is a 

D-Cauchy sequence. 

 

 

                 Throughout in this paper we use the symbol  

                           zyxzyxzyxzyx ,,,,,,.,, 22
   

 

2. MAIN RESULTS: 

THEOREM 2.1 : Let XXf :  be a surjective mapping of a f-orbitally bounded and f-

orbitally complete D-metric space  ,X .If there exists non-negative reals 721 ,...., aaa with 

1  and  1 , 0 76543212531  aaaaaaaaaaa  , such that ; 

 1.1.2

           zyxfzfxxazfyyafzfxxazyxafzfyfx ,,,,.,,.,,.,,.,, 4

2

3

2

2

2

1

2                                                                     

                                 zyxfzfyfxazfyyfzfxxazyxzfyya ,,,,.,,,,.,,,,. 765  
 

for all zyxXzyx    with  ,, .Then f  has a fixed point in X . 

PROOF:  Let Xx 0 . Since f is surjective, there exists an element 1x  satisfying 

 0

1

1 xfx  .By the way we can take   .,.........4,3,2 , 1

1  

 nxfx nn   

If 𝑥𝑚 = 𝑥𝑚−1 for some 𝑚 ,then 𝑥𝑚  is a fixed point of  𝑓 . 

Without loss of generality, we can assume 𝑥𝑛 ≠ 𝑥𝑛−1 for every n  .From (2.1.1), we have  

   
     
       
       
     

       
       pnnnpnnnpnnnpnnn

pnnnpnnnpnnnpnnn

pnnnpnnnpnnn

pnnnpnnnpnnnpnn

pnnnpnnnpnnnpnnn

pnnnpnnnpnnn

pnnnpnnn

xxxxxxaxxxxxxa

xxxxxxaxxxxxxa

xxxaxxxaxxxa

xxxfxfxfxaxfxxfxfxxa

xxxxfxxaxxxfxfxxa

xfxxafxfxxaxxxa

fxfxfxxxx





























,,.,,.,,.,,.                      

,,.,,.,,.,,.                       

,,.,,.,,.                        

,,.,,.,,.,,.                         

,,.,,.,,.,,.                         

,,.,,.,,.                         

,,,,

11171116

1151114

1

2

311

2

21

2

1

1171166

111514

11

2

3

2

21

2

1

1

2

11

2















Thus, 

          

         
    0,,.1                    

,,.,,.,,.

1

2

2

1117641

2

531









pnnn

pnnnpnnnpnnn

xxxa

xxxxxxaaaxxxaaa





  
Or,  

(2.1.2)          where,  01     2764

2

531  ataaataaa  

(2.1.3)     111 ,,/,,       pnnnpnnn xxxxxxt   

Let   Rg ,0:  be the function  

(2.1.4)  
 
       2764

2

531 1 ataaataaatg   

Then from the hypothesis,   010 2  ag  

and   011 7654321  aaaaaaag . 
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Let  1 , 0k  be the root of the equation   0tg . 

Then,   0tg  for kt  and therefore  

       
111 ,,.,,   pnnnpnnn xxxkxxx   

 
212

2 ,,.k                           pnnx xxx  

Mk n



                         

...................................                         
 

Where M is a D-bound of  xf0  . 

                Now, an application of Lemma 2.1 yields that  nx is a D-Cauchy sequence. Since 

X is f-orbitally complete, there is a point Xx such that, xxnn lim .  

Now, we shall show that x  is a fixed point of f . 

Since, f is surjective there exists Xy in  , such that  xfy 1  

For infinitely many xxn n  ,  , hence for such n , we have  

   

     

       
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fyfyfxxxx

nnnn

nnnn
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nnnn

nnnn

nnn
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
















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


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



 

On letting n , we obtain  

         

           

   yyxaaa

yyxxxxayxyxxxayyxyxya

yyxxxxayxyaxxxayyxa

,,.         

,,.,,.,,.,,.,,.,,.         

,,.,,.,,.,,.,,.0       

2

531
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
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







 

Since, yxaaa    So , 0531 . 

Thus x  is a fixed point of f . 

This completes the proof.  

COROLLARY 2.2: Let XXf : be a surjective mapping of a f-orbitally bounded and f-

orbitally complete D-metric space X .If there exists a real constant 1k , such that  

(2.2.1)       zyxkfzfyfx ,,.,, 22     for all zyxXzyx   with ,, . 

Then f has a fixed point in X . 

PROOF   : Proof of the corollary 2.2 follows easily from theorem 2.1. 

3.     It is possible that a D-metric space which is complete w.r.t. a D-metric but may not be 

complete w.r.t. another D-metric on X . In this section we consider a D-metric space with 

three D-metrics, i.e. a tri D-metric space and investigate some results on the fixed points on 

the line of Maia [5]. 

 

THEOREM 3.1: Let X  be a D-metric space with three D-metrics 21  and  ,  . Let 

XXf :  be a surjective mapping. If there exists non-negative reals 7321 ,.....,, aaaa  with 

1 , 0 2531  aaaa  and 17654321  aaaaaaa , such that the following 

conditions hold in X ; 
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(i)       Xzyxzyxzyxzyx  ,, allfor   ,,,,,, 12  . 

(ii) X is f-orbitally bounded and f-orbitally complete w.r.t. 1  

(iii) f is continuous w.r.t. 2 . 

(iv) f  Satisfies condition  1.1.2  w.r.t.  . 

Then f  has a fixed point in X . 

PROOF: Let Xx 0 . Since f  is surjective, there exists an element 1x satisfying 

 0

1

1 xfx  .By the same way we can take  

                            ,.........4 ,3 ,2   ,   1

1  

 nxfx nn  

Then proceeding as in the proof of theorem (2.1), with similar arguments , we get  

                          
p

n

pnnn xxxkxxx ,,,, 101    

Since,  1  on 3X  , we have  

                      

   
 

  1

10

n

111

  w.r.t.0 of bound-D a is M  where,                            

,,k                           

,,,,







xMk

xxx

xxxxxx

f

n

p

pnnnpnnn





 

 

                Now, an application of Lemma 2.1 yields that  nx  is a D-Cauchy sequence in X  . 

w.r.t. 1 . Since X  is f-orbitally complete w.r.t. 1  , there exists a point Xx  such that,                 

                          xxnn lim  

Again since, 3

12 on  X   , we have  

          
   

  0,,  lim ,Or 

0,,lim,,lim

2

2

2

1

2

2









xxx

xxxxxx

nn

nnnn




 

This implies that the sequence  nx  converges to x  w.r.t. 2 . 

Now, by the continuity of f w.r.t. 2  it follows that  

                    fxxffxxx nnnnnn   limlimlim 1  

Thus x  is a fixed point of f . This completes the proof. 

COROLLARY 3.2: Let X be a D-metric space with three D-metrics 21  and    ,  .Let 

XXf : be a surjective mapping. If there exists a real constant 1k , such that, the 

following conditions hold in X ; 

(i)       Xzyxzyxzyxzyx  ,,  allfor   ,,,,,, 12   

(ii) X is f-orbitally bounded and f-orbitally complete w.r.t. 1  

(iii) f is continuous w.r.t. 2 . 

(iv) f  Satisfies condition  1.2.2  w.r.t.  . 

Then f  has a fixed point in X . 

PROOF:  Proof of the corollary 3.2 follows easily from theorem 3.1. 
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