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ABSTRACT In this paper, we obtain some results on fixed points for expansion mappings in
D-metric and Tri D-metric spaces, introduced by Dhage [1] .Our results includes several
fixed point results in ordinary metric spaces as special cases on the line of Maia [5].
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1. INTRODUCTION:
Motivated by the measure of nearness, the concept of a D-metric space introduced by
Dhage [1] is as follows:

A nonempty set X together with a function p: X x X x X — [O,oo) , is called a D-
metric space with a D-metric p, denoted by (X, p), if p satisfies the following properties:
(i) p(x,y,2)=0< x=y=2z (Coincidence) forall x,y,ze X
(i) p(xy,2)=plo{x,v,2}) (Symmetry) Where p is a permutation function.
(iii) p(x,y,2)< p(x,y,a)+ p(x,a,2)+ p(a,y,z) forall x, y, z,a e X . (Tetrahedral

inequality)
A sequence {x,}c X , is said to be D-converges to a point xe X if
lim,, .. p(X, X,,x)=0. Similarly , a sequence {x,}c X , is called D-Cauchy if

lim o p(xm,xn,xp)zo. A complete D-metric space is one in which every D-Cauchy
sequence converges to a point in it. A subset S of a D-metric space X is called bounded, if
there exists a constant K >0 , such that p(x,y,z)< K for all x,y,z € S. The infimum of all
such k is called the diameter of S and is denoted by &(S).

Let f:X — X , then the orbit of f at a point xe X is a set in X , defined by

O; (x)= {x, fx f 2x,....}. Again a D-metric space is called f-orbitally bounded if there exists a
constant M >0 such that p(x,y,z)< M for allx,y,z € O, (x).A D-metric space is called f-
orbitally complete if every D-Cauchy sequence in O (x) converges to a point in X .

It is known that the D-metric p is a continuous function on X* in the topology of D-
metric convergence which is Hausdorff, see Dhage [2].

In 1976, Rosenholtz [7] discussed local expansion mappings. Let (X,d)be an ordinary
metric space. Then a mapping T:X — X , expansive on a subset Bof X , if
d(Tx,Ty)>d(x,y) forall x,y B withx=y .

T is a Local expansion if every point in T has a neighbourhood B on which T is expansive.
In fact Rosenholtz proved, “If (X,d) be a complete metric space and T: X — X be a
self map of X onto itself satisfying;
d(Tx,Ty)> Ad(x,y) forall x,y € X with x=y and 2 >1.Then T has a fixed point in X .
We need the following D-Cauchy principle developed by Dhage [3].
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Lemma 1: (D-Cauchy principle): Let {x,} be bounded sequence with D-bound K ,
satisfying:

(1.1.2) p(yn, Yo yp)s A'K, foralln,pe N withp>n,where0<A1<1.Then {y,}isa
D-Cauchy sequence.

Throughout in this paper we use the symbol

p(x.y,2)p(x.y,2)={p(x,y,2)}* = p*(x,y,2)

2. MAIN RESULTS:
THEOREM 2.1 : Let f: X — X be a surjective mapping of a f-orbitally bounded and f-

orbitally complete D-metric space (X, p).If there exists non-negative reals a,,a,,...a, with

a+a,+a;,>0,a,<land a +a,+a,+a, +a, +a, +a, >1,suchthat;

(2.1.1)

P (I, Ty, 2) > a,.p* (%, y,2)+2,.0%(x, &, f2)+2a,.0°(y, Ty, 2)+a,.0(x, &, 2)p(x, y,2)
+ag.0(y, fy,2)p(x,y, 2)+ag.p(x, &, f2)p(y, fy.2)+a,.0(f, fy, 7)p(x, y,2)

forall x,y,ze X with x=y=z.Then f has a fixed pointin X .

PROOF: Let x, € X . Since f is surjective, there exists an element X, satisfying

x, € f *(x,).By the way we can take x, € f *(x,_,),n=234,....... :

If x,,, = x,,_1 for some m ,then x,, is a fixed point of f .
Without loss of generality, we can assume x, # x,_; for every n .From (2.1.1), we have

PZ(X 1 Xns Xngp 1) Z(fxn X an+p)
> 8,07 (X Kot Xy 1+ 8007 (60 T, D )+ 807 (s P00 %,)
+a4.p(Xn, X5 an+p) ( Xns Xps n+p)+a5 ,0( Xpir TX00 X n+p)p(xnixn+l’xn+p)
42k, 1%, 16, b0k, X, X0 )+ 2B, B B Do 005, )
=a.p (X Xpi1r Xn+p)+ a.p (X Xnar Xngp 1)+a3,0 ( Xnrr Xns Xn+p)
+a, ,0( Xns Xno1s Xngpaa ),0( X1 Xnsas n+p)+a5p( Xns11 Xp s n+p)‘p Xny Xnsas n+p)
+4a;. p( X X1 Xn+p 1 p(xn+1’ Xn’xn+p)+ a7.p( X, 1’Xn’xn+p 1)p(xn,xn+l,xn+p)

Thus,
(al +a; + 8.5),0 (Xn’xn+1' Xn+p) (a4 +as +a, )'p(xn—l’ X Xn+p—l)p(xn 1 Xnia Xn+p)

_(1_ 3.2).,0 (Xn—ll Xn’xn+p)S 0

Or,

(21.2) (a,+a,+a )’ +(a, +a,+a, t—(1-a,)<0, where

(213) t = lp(xn ! Xn+1’ Xn+p)/ p(xn—11 Xn ’ Xn+p—1)J

Let g:[0,00) > R be the function

(2.1.4) g(t)= (al + 8, +a5)t2 +(a4 + 8 +a7)t _(1_a2)

Then from the hypothesis, g(0)=a, -1<0

and g()=a, +a, +a, +a, +a, +a, +a, —1>0.
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Let k €(0,1) be the root of the equation g(t)=0.

Then, g(t)<0 for t <kand therefore
p(Xn 1 X1 Xn+p ) < k'p(xn—l’ Xn) Xﬂ+P—1)
< k2 'p(xx—z ' Xn—l’ Xn+ p—2)

<k"M
Where M is a D-bound of 0 (x) .
Now, an application of Lemma 2.1 yields that {x, }is a D-Cauchy sequence. Since
X is f-orbitally complete, there is a point x € X such that,lim . x, =X.
Now, we shall show that x is a fixed point of f .
Since, f is surjective there existsyin X , such that y e f *(x)
For infinitely many n, x, # x , hence for such n, we have

P (%0 % X) = p? (.0, T, Ty)
2 ai-pz(xnw Y, Y)+ az-pz(xnw X1 fy)+ as-pz(y’ fy, y)
+2,.0(X0, P, T9)0(X0, Y, Y)+ 8500y, By, Y)o(X0, YY)
+85.0(%,.00 P01, TY) oy, Y, y)+ 200,00 fy, fy)o(X,.. v, )
= 8,0 (Xo1r V1 ¥)+ 007 (Xpu00 X0, X) + 8507 (Y, X, )
+ 840X g0 X0 X)2(Xo0, V0 ¥ )+ 35.0(Y, X, Y)2(X000, Y1 Y)
+8g.2(Xo 1, X0, X)0(Y, X0 V) + 200X, X X) 20X 0, Y, Y)
On lettingn — o, we obtain
02a,.p%(X, ¥, ¥)+8,.0%(X, % X)+85.0% (¥, X, ¥) +8,.0(%, X, X).0(X, ¥, ¥)
+25.0(Y,% Y)o(X, ¥, )+ 8g.p(% X, X0y, X, y) + a;.0(x, X, ) 0(x, ¥, y)
= (al +a; +3; )-pz(X’ Y, Y)
Since,a, +a; +a; >0,S0 x=y.
Thus x is a fixed point of f .

This completes the proof.

COROLLARY 2.2: Let f: X — X be a surjective mapping of a f-orbitally bounded and f-
orbitally complete D-metric space X .If there exists a real constant k >1, such that

(2.21) p*(#, Ty, z)>k.p?(x,y,z) forallx,y,ze X withx =y = z.

Then f has a fixed pointin X .

PROOEF _: Proof of the corollary 2.2 follows easily from theorem 2.1.

3. ltis possible that a D-metric space which is complete w.r.t. a D-metric but may not be
complete w.r.t. another D-metric on X . In this section we consider a D-metric space with
three D-metrics, i.e. a tri D-metric space and investigate some results on the fixed points on
the line of Maia [5].

THEOREM 3.1: Let X be a D-metric space with three D-metrics p, p, and p, . Let
f : X —> X be a surjective mapping. If there exists non-negative reals a,,a,,a,,.....a, with
a+a;+a;,>0,a,<1 and a, +a,+a,+a, +a, +a,+a, >1, such that the following
conditions hold in X ;
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i p.(xy.2)<p(xYy.2)< p(xy,2) forall x,y,z e X .
(i) X is f-orbitally bounded and f-orbitally complete w.r.t. p;
(iii) f is continuous w.r.t. p,.
(iv)  f Satisfies condition (2.1.1) w.rt. p.
Then f has a fixed pointin X .
PROOEF: Let x, € X . Since f s surjective, there exists an element X, satisfying
x, € T (x,).By the same way we can take
x,efx,,), n=234,.
Then proceeding as in the proof of theorem (2.1), with similar arguments , we get
p(xn,xml,xmp)é k”p(xo,xl,xp
Since, p, < p on X* , we have
pl(xn 1 Koo Xnap ) < p(Xn » Xnir Xnap )

Sknp(XO,X X )

11 %p
<k"M , whereMis a D - boundof O, (x)w.r.t,p,
Now, an application of Lemma 2.1 yields that {x, } is a D-Cauchy sequence in X .
w.r.t. p;. Since X is f-orbitally complete w.r.t. p, , there exists a point x € X such that,
lim_ X, =X
Again since, p, < p,on X* , we have
lim, . 0,2 (x,, x,x)<lim___ p*(x,,xx)=0
or,lim . p,%(x,,xx)=0
This implies that the sequence {x,} converges to x w.r.t. p,.
Now, by the continuity of f w.r.t. p, it follows that
x=lim, _ x, =lm_ _ f, = fllim__x]=f
Thus x is a fixed point of f . This completes the proof.
COROLLARY 3.2: Let X be a D-metric space with three D-metrics p, p, and p, .Let
f: X — X be a surjective mapping. If there exists a real constant k >1, such that, the
following conditions hold in X ;

(i) p,(%,y,2)< p,(x,y,2)< p(x,y,z) forall x,y,ze X

(i) X is f-orbitally bounded and f-orbitally complete w.r.t. p;
(iii) f is continuous w.r.t. p,.

(iv)  f Satisfies condition (2.2.1) w.rt. p.

Then f has a fixed point in X .

PROOEF: Proof of the corollary 3.2 follows easily from theorem 3.1.
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