General Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings

P. SrikanthRao and D. Bharathi
Padmasri Dr. B. V. Raju Institute of Technology, Narsapur, Medak District, A.P, India.

Abstract: The Purpose of this paper is to prove common fixed point theorems in metric space by using occasionally weakly compatible six self mappings satisfying the implicit relation which unify and generalize most of the existing relevant fixed point theorems.

2000 Mathematics Subject Classification : 54H25, 47H10

Keywords: Compatible, Weakly compatible, Occasionally Weakly Compatible and implicit relations.

I. Introduction

The concept of the commutativity has been generalized in several ways. For this, Sessa, S. [17] has introduced the concept of weakly commuting. Obviously two commuting mappings are weekly commuting but not conversely as given in [17]. Gerald Jungck [4] initiated the concept of compatibility. A weakly commuting pair is compatible but not conversely as given in Jungck [4]. In the later years the concept of compatibility is further generalized in many ways. G. Jungck and P.P. Murthy and Y.J. Cho [5] introduced the concept of compatible mappings of type (A) and they gave some examples to show that compatible maps of type (A) need not be compatible mappings. Extending type (A) mappings H.K.Pathak and M.S.Khan [13] introduced the concept of compatible mappings of type (B) and they gave some examples to show that compatible maps of types (B) need not be compatible mappings of type (A). In 1996, H.K.Pathak, Y.J.Cho, S.S. Chang and S.M.Kang [11] introduced the concept of compatible mappings of type (P) and they gave some examples to show that compatible mappings of type (P) need not be compatible mappings, compatible mappings of type (A) stronger than compatible mappings of type (B). In 1998, H.K.Pathak, Y.J.Cho, S.M.Kang and B.Madharia [12] introduced another extension of compatible mappings of type (A) in normed spaces called compatible mappings of type (C) and with some examples they compared these mappings with compatible maps. From the propositions given in [4], [5], [11], [12], [13] we observe that the concepts of compatible, compatible mappings of type (A), compatible mappings of type (B), compatible mappings of type (C) are equivalent when S and T are continuous. They are independent if the functions are discontinuous. It has been known from the paper of Kannan [8] that there exists maps that have a discontinuity in the domain but which have fixed points. Moreover, the maps involved in every case were continuous at the fixed point. In 1998, Jungck and Rhoades [6] introduced the notion of weakly compatible and showed that compatible maps are weakly compatible but not conversely. Recently in 2006 Jungck and Rhoades [7] introduced occasionally weakly compatible maps (owc) which is more general among the commutativity concepts. The main purpose of this paper is to extend the results of [7] and [15].

II. Preliminaries

Definition 2.1. Let S and T be mappings from a metric space (X, d) into itself. The mappings S and T are said to be

(i) Compatible if \(\lim_{n \to \infty} d(STx_n, TSx_n) = 0 \)

(ii) Compatible of type(A) if \(\lim_{n \to \infty} d(STx_n, TTx_n) = 0 \) and
 \[\lim_{n \to \infty} d(TSx_n, SSx_n) = 0 \]

(iii) Compatible of type(B) if
 \[\lim_{n \to \infty} d(STx_n, TTx_n) \leq \frac{1}{2} \left(\lim_{n \to \infty} d(STx_n, St) + \lim_{n \to \infty} d(Tt, SSx_n) \right) \]
 \[\lim_{n \to \infty} d(TSx_n, SSx_n) \leq \frac{1}{2} \left(\lim_{n \to \infty} d(TSx_n, Tt) + \lim_{n \to \infty} d(Tt, TTx_n) \right) \]

(iv) Compatible of type(P) if \(\lim_{n \to \infty} d(SSx_n, TTx_n) = 0 \)
A pair of maps T and S is called weakly compatible pair if they commute at coincidence points.

Definition 2.3. [7]. Two self maps S and T on a set X are said to be occasionally weakly compatible (owc) if and only if there is a point \(x \in X \) which is a coincidence point of S and T at which S and T commute. i.e., there exists a point \(x \in X \) such that \(Sx = Tx \) and \(STx = TSx \).

III. Implicit Relations.

Let \(F \) be the set of all continuous functions \(F : \mathbb{R}^2 \to \mathbb{R} \) satisfying the following conditions:

(3.1) \(F \) is non-increasing in variables \(t_1 \) and \(t_6 \).

(3.2) there exists \(h \in (0,1) \) such that for \(u, v \geq 0 \) with

\[F(u, v, u, v, u, v) \leq 0 \] or

(3.4) \(F \) is continuous in \(u, v, 0, u + v \) and implies \(u \leq h v \).

(3.5) \(F(u, 0, 0, u) > 0 \) for all \(u > 0 \).

The following examples of such functions \(F \) satisfying (3.1), (3.2), (3.3), (3.4) and (3.5) are available in [15] with verifications and other details.

Example 3.6: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = t_1 - k \max \left\{ t_2, t_3, t_4 \left(t_5 + t_6 \right) \right\} , \text{ where } k \in (0,1). \]

Example 3.7: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = t_1^2 - t_1(\alpha t_2 + \beta t_3 + \gamma t_4) - \eta t_5 t_6, \]

where \(\alpha > 0; \beta, \gamma, \eta \geq 0; \alpha + \beta + \gamma < 1 \) and \(\alpha + \eta < 1 \).

Example 3.8: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = t_1^3 - \alpha t_2 - \beta t_4 t_6 - \gamma t_5 t_6 - \eta t_5 t_6^2, \]

where \(\alpha > 0; \beta, \gamma, \eta \geq 0; \alpha + \beta < 1 \) and \(\alpha + \gamma + \eta < 1 \).

Example 3.9: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = t_1^3 - \alpha \frac{t_2 t_4 + t_4^2}{1+t_2+t_3+t_4}, \text{ where } \alpha \in (0,1). \]

Example 3.10: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = t_1^2 - \alpha \frac{t_2}{t_5+t_6}, \text{ where } \alpha > 0, \beta \geq 0 \text{ and } \alpha + \beta < 1. \]

Example 3.11: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = \begin{cases} t_1 - a_1 t_3 t_4 - a_2 t_2 - a_3 (t_5 + t_6), & \text{if } t_3 + t_4 \neq 0 \\ t_1, & \text{if } t_3 + t_4 = 0 \end{cases} \]

Where \(a_1 \geq 0 \) with at least one \(a_1 \), non zero and \(a_1 + a_2 + 2a_3 < 1 \).

(3.1): Obvious.

(3.2)(3.3): Let \(u > 0, F(u,v,v, u, u + v, 0) = u - a_1 (v^2 + u^2) / (v + u) - a_2 (u + v) \leq 0 \). If \(u \geq v \), then \(u \leq (a_1 + a_2 + 2a_3) u < u \) which is a contradiction. Hence \(u < v \) and \(u \leq hv \) where \(h \in (0, 1) \).

(3.4): Similar argument as in (3.3).

(3.5): \(F(u, 0, 0, u, u) = u > 0 \) for all \(u > 0 \).

We also add the following examples [16] without verification.

Example 3.12: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as

\[F(t_1, t_2, \ldots, t_6) = \begin{cases} t_1 - \alpha t_2 - \beta \frac{t_3 t_4 + \eta t_5 t_6}{t_4 + t_5}, & \text{if } t_3 + t_4 \neq 0 \\ t_1, & \text{if } t_3 + t_4 = 0 \end{cases} \]

Where \(\alpha, \beta, \gamma \geq 0 \) such that \(1 < 2 \alpha + \beta < 2 \).

Example 3.13: Define \(F(t_1, t_2, \ldots, t_6) : \mathbb{R}_+^6 \to \mathbb{R} \) as
From (4.1.1) we have

$$F(t_1, t_2, \ldots, t_6) = t_1 - a_1t_1 - a_2t_2 - a_3t_3 - a_4t_4 - a_5t_5 - a_6t_6$$

where \(\sum_{i=1}^{6} a_i < 1\)

Example 3.14: Define \(F(t_1, t_2, \ldots, t_6) : R^6_+ \to R_+\)

$$F(t_1, t_2, \ldots, t_6) = t_1 - \alpha \left(\beta \max \left\{ t_2, t_3, t_4, t_5, t_6 \right\} \right)$$

$$+ \left(1 - \beta \right) \left\{ \max \left\{ t_2^3, t_3^3, t_4^3, t_5^3, t_6^3 \right\} \right\}$$

where \(\alpha \in (0, 1)\) and \(0 \leq \beta \leq 1\).

Example 3.15: Define \(F(t_1, t_2, \ldots, t_6) : R^6_+ \to R\) as

$$F(t_1, t_2, \ldots, t_6) = t_1^2 - \alpha \left(\beta \max \left\{ t_2^2, t_3^2, t_4^2 \right\} \right) - \beta \left(\max \left\{ t_5, t_6 \right\} \right)$$

Where \(\alpha, \beta, \gamma \geq 0\) and \(\alpha + \beta + \gamma < 1\).

Popa et al. [16], noticed that Husain and Sehgal [3] type contraction conditions \(e.g., [2, 9, 10, 18]\) can be deduced from similar implicit relations in addition to all earlier ones if we slightly modified (3.1) as follows:

(3.1)' \(F\) is decreasing in variables \(t_2, \ldots, t_6\).

Hereafter, let \(F : R^6_+ \to R\) be a continuous function which satisfy the conditions (3.1)', (3.2), (3.3), (3.4) and (3.5) and let \(\phi\) be the family of such functions \(F\). Some examples of [16].

Example 3.16: Define \(F(t_1, t_2, \ldots, t_6) : R^6_+ \to R\) as

$$F(t_1, t_2, \ldots, t_6) = t_1 - \phi \left(\max \left\{ t_2, t_3, t_4, t_5, t_6 \right\} \right)$$

Where \(\phi : R^+ \to R^+\) is an increasing upper semi continuous function with \(\phi(0) = 0\) and \(\phi(t) < t\) for each \(t > 0\).

(3.1)': Obvious.

(3.2) (3.3): Let \(u > 0\). \(F(u, v, v, v, u, u, v, 0) = u - \phi \left(\max \left\{ v, v, u, (u + v)/2 \right\} \right) \leq 0\).

If \(u \geq v\), then \(u \phi(u) < u\) which is a contradiction. Hence \(u < v\) and \(u \leq hv\)

Where \(h \in (0, 1)\).

(3.4): Similar argument as in (3.3).

(3.5): \(F(u, u, 0, 0, u) = u - \phi \left(\max \left\{ u, 0, (u + v)/2 \right\} \right) \leq \phi(u) > 0\) for all \(u > 0\).

Example 3.17: Define \(F(t_1, t_2, \ldots, t_6) : R^6_+ \to R\)

$$F(t_1, t_2, \ldots, t_6) = t_1 - \phi \left(\max \left\{ t_2, t_3, t_4, t_5, t_6 \right\} \right)$$

Where \(\phi : R^6_+ \to R^+\) is an upper semi continuous and non decreasing function in each coordinate variable such that \(\phi(t, t, \alpha, \beta, \gamma) < t\) for each \(t > 0\) and \(\alpha, \beta, \gamma \geq 0\) with \(\alpha + \beta + \gamma \leq 3\).

Example 3.18: Define \(F(t_1, t_2, \ldots, t_6) : R^6_+ \to R\)

$$F(t_1, t_2, \ldots, t_6) = t_1^2 - \phi \left(\max \left\{ t_2, t_3, t_4, t_5, t_6 \right\} \right)$$

Where \(\phi : R^6_+ \to R^+\) is an upper semi continuous and non decreasing function in each coordinate variable such that \(\phi(t, t, \alpha, \beta, \gamma) < t\) for each \(t > 0\) and \(\alpha, \beta, \gamma \geq 0\)

with \(\alpha + \beta + \gamma \leq 3\).

Here it may be noticed that all earlier mentioned examples continue to enjoy the format of modified implicit relation as adopted herein.

IV. Main Result

Now we state our first main result:

4.1 Theorem: \(L, M, A, B, S\) and \(T\) be self mappings of a metric space \((X, d)\) satisfying the conditions

(4.1.1) \(F(d(Lx, My), d(ABx, STy), d(ABx, LX), d(STy, My), d(ABx, My), d(STy, Lx)) \leq 0\)

(4.1.2) \(L(X) \subseteq ST(X)\) and \(M(X) \subseteq AB(X)\).

If one of \(L(X), M(X), AB(X)\) or \(ST(X)\) is a complete subspace of \(X\), then

(4.1.3) the pair \((L, AB)\) has a point of coincidence,

(4.1.4) the pair \((M, ST)\) has a point of coincidence.

Moreover, \(L, M, AB\) and \(ST\) have a unique fixed point provided both the pairs \((L, AB)\) or \((M, ST)\) is occasionally weakly compatible mappings.

Further if \(A, B, (S, T), (M, T), (L, T), (M, B)\) are commuting mappings then \(AB, ST, L, M\) have a unique common fixed point.

Proof. Since \(L(X) \subseteq ST(X)\), for arbitrary point \(x_0 \in X\) there exists a point \(x_1 \in X\) such that \(Lx_0 = STx_1\). Since \(M(X) \subseteq AB(X)\), for the point \(x_1\), we can choose a point \(x_2 \in X\) such that \(Mx_1 = ABx_2\) and so on. Inductively, we can define a sequence \(\langle y_n \rangle\) in \(X\) such that

(4.1.5) \(y_{2n} = LX_{2n} = STX_{2n+1}\) and \(y_{2n+1} = MX_{2n+1} = ABX_{2n+2}\), \(n = 0, 1, 2, \ldots\).

From (4.1.1) we have

\[F(d(Lx_{2n+2}, MX_{2n+1}), d(ABx_{2n+2}, STX_{2n+1}), d(ABx_{2n+2}, Lx_{2n+2}), d(STx_{2n+1}, MX_{2n+1}), d(ABx_{2n+2}, MX_{2n+1}), d(STx_{2n+1}, Lx_{2n+2})) \leq 0 \]

or \(F(d(y_{2n+2}, y_{2n+1}), d(y_{2n+1}, y_{2n}), d(y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n}), d(y_{2n}, y_{2n})) \leq 0\)
Let us write $d_n = d(y_n, y_{n+1})$, $n = 0, 1, 2, \ldots$. First we shall prove that $<d_n>$ is a non-decreasing sequence in R^+. From (4.1.1), we have

\begin{align*}
&F(d(Lx_{2n+1}, Mx_{2n+1}), d(ABx_{2n}, STx_{2n+1}), d(ABx_{2n}, Lx_{2n})), d(STx_{2n+1}, Mx_{2n+1}), \\
&d(ABx_{2n}, Mx_{2n+1}), d(STx_{2n+1}, Lx_{2n})) \leq 0,
\end{align*}

or

\begin{align*}
&F(d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n+2}, y_{2n+3}), d(y_{2n+3}, y_{2n+4}) \leq 0, \\
&d(y_{2n+1}, y_{2n+2}), d(y_{2n+1}, y_{2n+3}), d(y_{2n+2}, y_{2n+3}), d(y_{2n+2}, y_{2n+3}), d(y_{2n+3}, y_{2n+4}) \leq 0.
\end{align*}

Yielding thereby $d(y_{2n}, y_{2n+1}) = 0$ (due to (3.4)). Similarly, using (3.3) we can show that $d(y_{2n+1}, y_{2n}) = 0$. Thus it follows that $d(y_n, y_{n+1}) = 0$ for every $n \in N$.

Now we show $<y_n>$ is a sequence in a metric space (X, d) described by (4.1.5), then

$$\lim_{n \to \infty} d(y_n, y_{n+1}) = 0.$$

We have $d_{2n} \leq hd_{2n-1}$ and $d_{2n} \leq hd_{2n-1}$. Therefore, we obtain $d_n \leq h^nd_0$. Hence

$$\lim_{n \to \infty} d(y_n, y_{n+1}) = lim_{n \to \infty} d_n = 0.$$

The sequence $<y_n>$ described by (4.1.5) is a Cauchy sequence. Since $lim \: d(y_n, y_{m}) = 0$, it is sufficient to show that a subsequence $<y_{m_n}>$ of $<y_n>$ is a Cauchy sequence in X. Suppose that $<y_{m_n}>$ is not a Cauchy sequence in X. Then for every $\epsilon > 0$ there exists strictly increasing sequence $<m_n>$ of positive integers such that $k \leq m_n < m_{n+1}$ with $d(y_{m_n-1}, y_{m_n}) \geq \epsilon$ and $d(y_{m_n}, y_{m_{n+1}}) < \epsilon$. Now proceeding on the lines of the proof of Lemma 3.2 [14, p.355], we can show that $d(y_n, y_j) = 0$ for $i, j \in N$.

Now we show $<y_{n}>$ is a sequence in a metric space (X, d) described by (4.1.5), then

$$\lim_{n \to \infty} d(y_n, y_{n+1}) = 0.$$
General Common Fixed Point Theorems For Occasionally Weakly Compatible Mappings

Suppose L and AB are occasionally weakly compatible.
By occasionally weakly compatible of L, AB gives Lu = ABu and L(AB)u = (AB)Lu.
Occasionally weakly compatible of M, ST gives Mv = STv and M(ST)v = (ST)Mv.
L(AB)u = (AB)Lu and LLu = L(AB)u = (AB)Lu = (AB)(AB)u.
We have MMv = M(ST)v = (ST)Mv = (ST)(ST)v.
Form (4.1.1) F(d(LLu,Mv), d((AB)Lu, STv), d((AB)Lu, LLu),
 d(STv,Mv), d((AB)Lu,Mv), d(STv; LLu)) ≤ 0
or F(d(LLu,Mv), d(LLu,Mv), 0, 0, d(LLu,Mv),d(LLu,Mv)) ≤ 0.
Contradition to (3.5) if d(LLu,Mv)> 0.
Hence LLu = Mv = Lu. So Lu = LLu = (AB)Lu.
Therefore Lu is a common fixed point of L and AB.
Similarly we can prove that Mv (=Lu) is a common fixed point of M and ST.

To Prove Uniqueness of Lu
Suppose that Lu andLw, Lu = Lw are common fixed point of L, M, ST and AB by (4.1.1)
F(d(LLu,MLw), d((AB)Lu, (ST)Lw), d(LLu, ABLu),
 d(MLw,STLw), d(LLu,(ST)Lw), d(MLw, ABLu)) ≤ 0
or F(d(LLu,Lw), a, (Lu,Lw), a), d(LLu,Lw), a) ≤ 0.
Which shows Lu = Lw. But Lu = z, so z is the common fixed point of L, M, ST and AB.

Finally we need to show that z is a common fixed point of A,B,L,M,S and T.
Since (A,B), (A,L), (B,L) are commutative
Az = A(Bz) = A(BAz) = (AB)(Az); Az = ALz = LAz
Bz = B(BAz) = (BA)(Bz) = AB(Bz); Bz = BLz = LBz.
Which shows that Az, Bz are common fixed points of (AB, L) yielding there by Az = z = Bz = Lz = ABz in the
view of uniqueness of common fixed point of the pairs (AB, L).
Similarly using the, commutativity of (S, T), (S, M) and (T, M) it can be shown that
Sz = z = Tz = Mz = STz.
Now, we need to show that Az = Sz (Bz = Tz) also remains a common fixed point of both the pairs (AB, L) and (ST, M) from 4.1.1 we can easily prove Az = Sz and Bz = Tz. Which shows z is a common fixed point of A, B, L, M, S and T.

4.1.6 Corollary: The conclusions of Theorem 4.1 remain true if (for all x, y ∈ X) implicit relation (4.1.1) is replaced by any one of the following.

\[d(Lx, My) \leq k \max\{ d(ABx, STy), d(ABx, Lx), d(STy, My), \frac{1}{2}(d(ABx, My) + d(STy, Lx)) \}, \text{where } k \in (0, 1).\]

\[d^2(Lx, My) \leq d(Lx, My)[\alpha d(ABx, STy) + \beta d(ABx, Lx) + \gamma d(STy, My)] + \eta d(ABx, My)d(STy; Lx)\]
Where \(\alpha, \beta, \gamma, \eta \geq 0, \alpha + \beta + \gamma < 1\) and \(\alpha + \eta < 1\).

\[d^3(Lx, My) \leq \alpha d^2(ABx, STy) + \beta d(ABx, STy)d(STy, My) + \gamma d^2(STy, Lx) + \eta d(ABx, My)d^2(STy, Lx)\]
Where \(\alpha, \beta, \gamma, \eta \geq 0, \alpha + \beta + \gamma < 1\) and \(\alpha + \eta < 1\).

\[d^4(Lx, My) \leq \alpha d^3(ABx, STy) + \beta d^2(ABx, STy)d(STy, My) + \gamma d(ABx, My)d^2(STy, Lx) + \eta d(ABx, My)d(STy, Lx)\]
Where \(\alpha, \beta, \gamma, \eta \geq 0\) with at least one anon zero and \(\alpha + \alpha_2 + \alpha_3 < 1\).

\[d(Lx, My) \leq \alpha d(ABx, STy) + \beta d(ABx, Lx) + \gamma d(STy, My) + \eta d(ABx, My) + d(STy, Lx)\]
Where \(\alpha, \beta, \gamma \geq 0\) such that \(1 < 2\alpha + \beta < 2\).

\[d(Lx, My) \leq \alpha d(ABx, STy) + \beta d(ABx, Lx) + \gamma d(STy, My) + \eta d(ABx, My) + d(STy, Lx)\]
Where \(\alpha, \beta, \gamma \geq 0\) such that \(1 < 2\alpha + \beta < 2\).
[max \(d^2(ABx, STy), d(ABx, Lx)d(STy, My), d(ABx, My)d(STy, Lx), \frac{d(ABx, Lx)d(STy, Lx) + d(STy, My)d(ABx, My)}{2} \)]

Where \(\alpha \in (0, 1) \) and \(0 \leq \beta \leq 1 \).

(4.1.16) \(d^2(Lx, My) \leq \alpha \max \{ d^2(ABx, STy), d^2(ABx, Lx), d^2(STy, My) \} + \beta \max \{ \frac{d(ABx, Lx)d(ABx, My)}{2}, \frac{d(STy, My)d(ABx, My)}{2} \} + \gamma d(ABx, My)d(STy, Lx) \)

Where \(\alpha, \beta, \gamma \geq 0 \) and \(\alpha + \beta + \gamma < 1 \).

(4.1.17) \(d(Lx, My) \leq \phi \left(\max \{ d(ABx, STy), d(ABx, Lx), d(STy, My) \} \right) \)

\[\frac{1}{2}d(ABx, My) + d(STy, Lx) \]

Where \(\phi : R^+ \rightarrow R^+ \) is an upper semicontinuous and increasing function with \(\phi (0) = 0 \) and \(\phi (t) < t \) for each \(t > 0 \).

(4.1.18) \(d(Lx, My) \leq \phi \left(d(ABx, STy), d(ABx, Lx), d(STy, By), d(ABx, My), d(STy, Lx) \right) \)

with \(\alpha + \beta + \gamma < 3 \)

(4.1.19) \(d^2(Lx, My) \leq \phi \left(d^2(ABx, STy), d(ABx, Lx)d(STy, My), d(ABx, My)d(STy, Lx), d(ABx, Lx)d(STy, Lx), d(STy, My)d(ABx, My) \right) \)

Where \(\phi : R^+ \rightarrow R^+ \) is an upper semicontinuous and nondecreasing function in each coordinate variable such that \(\phi (t, t, \alpha t, \beta t, \gamma t) < t \) for each \(t > 0 \) and \(\alpha, \beta, \gamma \geq 0 \)

\[\alpha + \beta + \gamma < 3 \]

\textbf{Proof.} The proof follows from Theorem 4.1 and Examples 3.6 to 3.18 the above.

Put \(B = T = I_X \) in corollary 4.1.6, we get result in four self maps.

If we put \(B = T = I_X \) where \(I_X \) identity self map on \(X \) in theorem 4.1 then we get the following result.

\textbf{4.1.20 Corollary:} \(L, M, A \) and \(S \) be self mappings of a metric space \((X, d) \) satisfying the conditions

\(F(d(Lx, My), d(Ax, Sy), d(Ax, Lx), d(Sx, My), d(Ax, My), d(Sy, Lx)) \leq 0 \)

for all \(x, y \in X \) where \(F \) enjoys the property (3.5) and \(L(X) \subseteq S(X) \) and \(M(X) \subseteq A(X) \).

If one of \(L(X), M(X), A(X) \) or \(S(X) \) is a complete subspace of \(X \), then

\(L(A) \) has a point of coincidence,

(4.1.22) the pair \((M, S) \) has a point of coincidence.

Moreover, \(L, M, A \) and \(S \) have a unique common fixed point provided both the pairs \((L, A)\) or \((M, S)\) is occasionally weakly compatible mappings.

Taking \(L = M \) and \(T = B = I_X \) in theorem 4.1 we get the following corollary.

\textbf{4.1.23 Corollary:} \(L, A \) and \(S \) be self mappings of a metric space \((X, d) \) satisfying the conditions

\(F(d(Lx, Ly), d(Ax, Sy), d(Ax, Lx)d(Sy, Ly), d(Ax, Ly), d(Sy, Lx)) \leq 0 \) for all \(x, y \in X \) where \(F \)

enjoys the property (3.5) and \(L(X) \subseteq S(X) \) and \(L(X) \subseteq A(X) \). If one of \(L(X), M(X), A(X) \) or \(S(X) \) is a complete subspace of \(X \), then

(4.1.24) the pair \((L, A) \) has a point of coincidence,

(4.1.25) the pair \((L, S) \) has a point of coincidence.

Moreover, \(L, A \) and \(S \) have a unique common fixed point provided both the pairs \((L, A)\) or \((L, S)\) is occasionally weakly compatible mappings.

Taking \(A = S \) and \(T = B = I_X \) in theorem 4.1 we get the following corollary.

\textbf{4.1.26 Corollary:} \(L, M \) and \(S \) be self mappings of a metric space \((X, d) \) satisfying the conditions

\(F(d(Lx, My), d(Sx, Sy), d(Ax, Lx), d(Sx, My), d(Sy, Lx)) \leq 0 \) for all \(x, y \in X \) where \(F \)

enjoys the property (3.5) and \(L(X) \subseteq S(X) \) and \(M(X) \subseteq A(X) \). If one of \(L(X), M(X), S(X) \) is a complete subspace of \(X \), then

(4.1.27) the pair \((L, M) \) has a point of coincidence,

(4.1.28) the pair \((M, S) \) has a point of coincidence.

Moreover, \(L, M \) and \(S \) have a unique common fixed point provided both the pairs \((L, M)\) or \((M, S)\) is occasionally weakly compatible mappings.

Taking \(L = M, A = S \) and \(T = B = I_X \) in theorem 4.1 we get the following corollary.
4.1.29 **Corollary:** Let \(L \) and \(A \) be self mappings of a metric space \((X, d) \) satisfying the conditions

\[
F(d(Lx, Ly), d(Ax, Ay), d(Ax, Lx), d(Ay, Ly), d(Ay, Lx)) \leq 0
\]

for all \(x, y \in X \) where \(F \) enjoys the property (3.5) and \(L(X) \subseteq A(X) \). If one of \(L(X) \) or \(A(X) \) is a complete subspace of \(X \), then

(4.1.30) the pair \((L, A) \) has a point of coincidence.

Moreover, \(L \) and \(A \) have a unique common fixed point provided the pair \((L, A) \) is occasionally weakly compatible mappings.

References:

15. V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32 (1999), no. 1, 157-163.