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Abstract: We know that the smallest positive integer f such that a f  1 mod m is called the exponent of ‘a’ 

modulo m and is denoted by expma. We say that ‘a’ is a semi-primitive root mod m if expma = 
2

)(m
.   In this 

paper we discuss the properties of the semi primitive roots and examine for which prime 2 is a semi-primitive 

root. If S is the sum of semi-primitive roots less than p then we proved that p
p

S mod)
2

1
(


  .Also we 

proved that if ‘a’ is a semi primitive root then ‘a’ is a quadratic residue, converse  need not be true. It was 

established that whenever a is a semi-primitive root mod p where p is of the form 4n+3 then –a is a semi 

primitive root and if p = 4n+1 then expm (–a) = 
4

1p
.We establish that 2 is semi-primitive root for mod p 

whenever ‘p’ is of the form 2q+1where ‘q’ is an odd prime of the form 4n+3 and if 4n+1,8n+3 are primes  

 

then –2 is a semi-primitive root mod 8n+3 by using Gauss Lemma [1]. 

 

Definition: Suppose ‘a’ is any integer and m is a positive integer such that ( a, m ) = 1. 

 

We say that a is a semi-primitive root mod m if expm a = (m)/2. From the definition 

 reduced residue system mod m. 

Theorem 1: If m has a primitive root then there are exactly
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semi primitive roots given by 
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Proof: If a is a semi-primitive root then 

 

So every member of S is a semi-primitive root mod m. Conversely, if ‘g’ is a semi-primitive root then  

 

Now we find the sum of semi-primitive roots less than ‘p’. 

 

Theorem 2 : If p is an odd prime and S is the sum of semi-primitive roots less than p then 

Proof: Suppose ‘a’ is a semi-primitive root mod p, then an is a semi-primitive root mod p.  
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is an integer we have )
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If p is a prime of the form 8n+1,then 0)4()
2

1
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n

p
 . 0S  

 

We know that ‘a’ is quadratic residue mod p if x2  a (mod p) has a solution. 

 

Theorem3: If ‘a’ is semi-primitive root mod p then ‘a’ is a quadratic residue mod p. Proof: A is a semi 

primitive root mod p   pa

p

mod12

1
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Since p is an odd prime p has a primitive root say g. 

 

Now (a, p) = 1 we have )(1;mod pkpga k   
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p-1 divides k.
2

1p
since g is a primitive root mod p. 

 


2

k
is an integer i.e 

2

k
= m 

 

)(mod)( 2 pga m  


mg  is a solution of )(mod2 pax   Therefore a is a quadratic residue mod p. 

However converse is not true as there are 
2

))(( p
 semi-primitive roots and 

2

1p
quadratic residues. 
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Theorem4: If ‘a’ is a primitive root mod p where p =4n+3,then –a is a semi primitive root mod p. 

 

Proof: Let ‘a’ be a primitive root mod p. 

 

Then pa p mod11 
 pa p mod1)( 1  

 

pa p mod11 
 paa

pp

mod0)1)(1( 2

1

2

1





 

 pa

p

mod12

1





as a is a primitive root mod p. 
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Suppose expm  (-a) = f 

 

Then f 
2

1p
, 1  f  

2

1p
; i.e. 2f < p-1 

 

Since expm (-a) = f we have (-a) 2f  1(mod p) 
 

 a 2f  1(mod p) which is a contradiction since ‘a’ is a primitive root mod p. 
 

Therefore f = 
2

1p
 

Hence –a is semi-primitive root mod p. 

Similarly we can prove that if ‘p’ is of the form 4n+1 then expm (-a)= p-1/4 when n is  

odd.  

 

Theorem5: If 8n-1 and 4n-1 are primes then 2 is a semi-primitive root mod 8n-1. 

Proof; Let p = 8n-1 and q= 4n-1.Then p-1 = 2q. 

From Gauss lemma we have 

And   

 

Suppose expp2 = f then 2f 1(mod p) and f divides p-1/2 i.e fq 
 Since q is a prime we have f = q. 

 

Thus 2 is a semi-primitive root mod p. 

 

Theorem 6: ‘2’ is a semi primitive root mod p, where p =2q+1, q being an odd prime of 

 the form 4n+3. 
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Proof: Let p = 2q+1 then p-1/2 = q where q = 4n+3 

 

 

 

 

By Gauss lemma, 

Suppose expp2 = f then 2f 1(mod p) and f divides p-1/2 i.e. fq 

 Since q is a prime we have f = q. 

Thus 2 is a semi-primitive root mod p. 

 

Theorem7: If 8n+3 and 4n+1are primes then –2 is a semi-primitive root mod 8n+3. 

 

Proof: let p = 8n+3 and q = 4n + 1 So p-1/2 = 4n+1. 

 

By Gauss lemma  

  

Suppose expp (-2) = f then (-2)f 1(mod p) and f divides p-1/2 i.e fq 
  

Since q is a prime we have f = q 

 
Thus -2 is a semi-primitive root mod p. 
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