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Abstract: In this paper we introduce two spaces of Boehmians each of which contains the dual of a certain 

space of entire functions. Both these spaces of Boehmians are shown to be isomorphic to each other under 

the Fractional Fourier transform. We extend the theory of the Fractional Fourier transform on this new 

Boehmians space. 
Mathematics Subject Classification: (2000) 44A15, 44A40, 46F12, 44-99. 

Key Words and Phrases: Boehmians, Convolution, entire function, Fractional Fourier transform, 

Tempered distributions.  

 

I. Introduction 

The fractional Fourier transform (fractional FT) R is an extension of the ordinary Fourier 

transform and depends on a parameter  that can be interpreted as a sort of rotation by an angle  in the 
position frequency plane Alieva & Barbe [1]. Pathak 

[21-22] gave the comprehensive account of the Fourier transform on various spaces of distributions 

including distribution of the compact support. 

 The theory of Boehmians was motivated by the concept of regular operator’s [15]. The notion of 

convergence on the space of Boehmians and their properties are developed in [16]. Further, various types of 

Boehmians are introduced and investigated in [7,8,9,10,11,12,13,14,18,19]. Integral transforms for several 

of these Boehmians space are defined and their properties studied in [8,9,10,13,14,18].  

We wish to mention that in the literature so far developed spaces of complex valued functions of a 
real variable & their duals are generalized to the spaces of Boehmians and the classical theory of Fractional 

transform was also extend. However, the images under the Fractional Fourier transform were invariably 

classical spaces of distributions only. 

On the other hand, Howell [3-6] introduces “new” theory of Fourier analysis, this presenting an 

entirely a new approach. For this purpose, the space G, conceived by Howell [3] of rapidly decreasing test 

functions is considered. The testing function space G consisting of entire functions. He also develops the 

theory of FT on G and its dual G ’ in a series papers [4-6]. Howell, even proves that G is dense in S. 

It is because of this that the theory of Fractional Fourier transform on G  and hence also on 

 ,cGB  is more general than the theory of Fractional FT on classical tempered distributions. 

 In this paper we introduce two spaces of Boehmians each of which contains the dual space G  
described above & extend the theory of Fractional Fourier transform. Moreover, this extended Fractional 

Fourier transform can now be considered as a continuous linear isomorphic between these two spaces of 

Boehmians. 

 In section 2 we shall recall various spaces of analytic functions and their duals available in the 

literature. The definitions of Fractional FT, convolution of Fractional FT has been defined. We shall also 

refer to the literature for all the results we require as preliminaries.  

 In section 3 we shall recall the general construction of Boehmians is given in [16] 

We also introduce two spaces of Boehmians & investigate the convergence properties in these Boehmians. 

Further, we also demonstrate how the classical dual space can be viewed as a dense subspace of both these 
spaces of Boehmians. 

 In the section 4, we shall define the Fractional FT & prove that the two spaces of Boehmians are in 

some sense isomorphic to each other under the Fractional FT. 

 

II. Preliminaries 

Throughout this paper, n will denote some arbitrary fixed positive integer and  will denote the Lebesgue 

measure on . We use N, N0, , ¢ to denote the positive integers, non-negative integers, real numbers and 
the complex numbers respectively. 

 Two spaces of functions will be of special importance. They will be denoted by testing functions 

spaces G & 
c

G  Here we shall recall the definition of testing function spaces G &G  defined in [3-6]. 
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Let    Imz:¢zB  

DEFINITION 2.1: A function ¢¢:  is an element of G if and only if it satisfies the two conditions.  

(i)  is an analytic function of each complex variable  

(ii) For every 0,  
 

DEFINITION 2.2: A function ¢¢:  is an element of
c

G  if and only if it satisfies the conditions, (i) f 

is an entire function. 

(ii) There is a fixed  0 such that for each 0’   zfef
z

Bz

Re
sup










  

From the above two definitions it is clear that 
cGG  . The topology on G is defined by the set of 

seminorms  
Where  

DEFINITION 2.3: The Fractional Fourier Transform: The one dimensional Fractional FT with parameter 

 of f(x) denoted by Rf(x) [1], performs in linear operation, given by the integral transform 
Where the kernel 
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K(x,) is the propagator of the non-stationary Schrodinger equation for a harmonic oscillator, which is 

well know in quantum mechanics (where =t relates to time t and classical frequency , and  is a 

position at the moment t). Changing gradually the angle  the fractional FT permits to input function f (x) 

to its Fourier image F/2() for =/2, then to F (-x) for = and to F/2(-) for =3/2. 

 The fractional FT at angle equal to 2n ( n is an integer) corresponds to the identity operator [1].  
Remark [2]:  

The formulae obtained from that of Fourier transform for the test functions in S, hold true for the 

fractional FT with the parameter ,  ranging from 0 to /2. Moreover, since S is dense in S’, these 
formulae remain true for all functions in S’. 

DEFINITION 2.4: Convolution: Let f, G. The convolution of f &  is defined as  

And it is proved in [4] that (f) is in G. 

DEFINITION 2.5: Fractional FT of a convolution of generalized functions : If  fS’ & gS then  

R(fg)=C(Rf)(Rh)      (SL’) 

  Re
sup .

z

z B

e z


 


 

 . / 0

 

 Re
sup ( ) .

z

z B

e z





 





( ) ( ) ( ) ( , ) ( ) (1)R f x F K x f x dx

   




        

1/ 2

1 (2 sin ) exp( / 2)C i i and   

2

1
sin .

2
C  



Fractional Fourier Transform of Boehmians 

www.iosrjournals.org                                                             59 | Page 

i.e. R(fg) = exp(-iC2
2cos) R[f] R[h] where h= g / (C1exp(iC2x2cos). 

DEFINITION 2.6: Convolution theorem for distributions: Let fS’(n) & gE’(n). 

Then fgS’(
n
) & for 0  / 2,     R


(fg) = C’(R


f) (R


g) 

Where  

LEMMA 2.7: For any f, gG, for 0  /2 

a) R[fg]=exp(-iC2
2 cos) R[f] R [h] 

b) R[f.g]=exp (-iC2
2 cos)(2)-n R[f] R [h].  

Where h= g / C1exp (iC2x2 cos). 

DEFINITION: 2.8: Fractional FT on G: For each  in G, 0 /2,  

Where K(t, z) is the kernel of the transformation as given by (2). This transform is obviously will defined 

on G. 

THEOREM 2.9: For 0 ,
2


   R

 is continuous, linear, one to one mapping from G onto G. 

LEMMA 2.10: For each f  cG there are finite positive constant C and   such that for 

,f C


   for all  G. Now, for each f  cG ,  G, we define the mapping R
 on  by 

   , , ,0
2

R f f R  
     .  

THEOREM 2.11: R
,  being a parameter; 0

2


   is the continuous linear, one to one mapping 

from 
cG  onto

cG . 

DEFINITION 2.12: A function f is said to be in 
c

nG    (n= 0,1,2….) if and only if it satisfies the conditions,  

(i) f cG  

(ii) For every 0  ,   Re

,
sup ( )

n z

n
z B

f e f z








  is finite. 

It is clear that G 0

c   G 1

c … and 
cG =

0



 G
c

n  with the family of semi norms given by  

 ,
. , 0

n 
   Each G

c

n  is a Frechet space and hence 
cG  is a testing function space. 

DEFINITION 2.13: A sequence of functions  nf in  
cG  is said to converge to a function f in 

cG  if there 

exist integer N0 and m such that for every n 0N , fn, f are in G
c

m  & fn converge to f in G
c

m . 

DEFINITION 2.14: A sequence  nf  in G
'
 converges to f in G

'
 if there exists Cn for n=1,2,--- with 

Cn 0  as n  and 0   such that for all  G,   n nf f C


   . Here after 

convergence in G  means the above convergence only unless stated otherwise. 

DEFINITION 2.15: For uG  &  G we define their convolution product as     zu z u T  


 

where    t t  


 and     zT t t z   . 
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THEOREM 2.16: Let uG  &  G. Then u   cG . 

Proof: See [6] for a detailed proof. 

LEMMA 2.18: Let un 0  as n  in G&  G be any fixed element. Then 0nu    as 

n in cG . 

PROOF: Since 0nu   as n  in G  there exists   0nc   as n  and 0.   

  ,n nC


       ( G)                                                                  (4) 

Choose m  such that m .  We shall now prove that  nu   is in G
c

m
. Consider  

 

 

Re

,

Re

Re

sup ( )

sup

sup

m z

n nm
z

m z

n z
z B

m z

n z
z B

u e u z

e u T

e C T











 

















  





B





                                            by (4)                    

 Re
sup

m z

n
z B

n

C e

C





 

 
















 

in  which 
 



   and C 0n  as .n  This proves that   nu  G

c

m  and    0nu   as 

n  in G
c

m . 

 

LEMMA 2.18: If f 0n  as n  in
cG  then f 0n  as n G . 

PROOF: Since fn 0  as n  in 
cG  there exists m such that fnG

c

m  for large n & fn 0  as n  

in G
c

m .   For all 
,

0, 0n m
f


    as .n  Fix 0   and let C

,mnn f 
 so that Cn 0  as n . 

We have   Rem z

n nf z C e                                         (5) 

Choose &m  G. Then         m x

n n nf f x x dx C e x dx  
 

     by (5). 

Since G,   x
x e




 


 .  

Hence     '2m x

n n n nf C e dx C C
m



  
   







 
   

 
  

Where 
' 2

0n nC C
m

 
  

 
 as .n  This proves that f 0n  as n  in G . 

 

III. Construction Of Boehmians & Its Convergence Properties 
A general reference for this section can be seen in [9,16,17]. In this section we recall the 

constructions of Boehmians for two classes  ,cGB  and  ,GB  from [6]. Consider the two spaces 

cG  and G . To each pair of elements f  cG  and  G, the convolution product  f   defined by 

    zf z f T  


 is an element of 
cG  (see [6]). Thus we have a mapping  * such that 

cc GGG  : . 

 It is easy to verify that this convolution product satisfies the following conditions. 

(i) If , G then   G and       . 
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(ii) If f f  cG & , G then    .f f         

(iii) If f, g cG  and  G then      f g f g        . 

Consider a class   of sequences  n  in G satisfying the following conditions: 

  1n x dx


      (I) 

 n x dx M


     (II) 

   lim 1 0, 0& 0
x

n
n

x

e x dx


 




           (III) 

We shall show that the class of sequence   satisfies the necessary properties of “Delta sequences”. 
Towards this, we shall prove a few preliminary results, which will help us in obtaining the required 

properties. 

THEOREM 3.1: Let  n  . For each fixed 0& 0,    the condition 

   lim 1 0
x

n
n

x

e x dx







   is equivalent to    lim 1 0
x

n
n

e x dx







  .  

PROOF: It suffices to prove that for each fixed 0& 0,        lim 1 0
x

n
n

x

e x dx
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   lim 1 0
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n
n

e x dx







  . For    , 1 1
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x e e
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   with M as in (II). Thus  

         1 1 1
x x x
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e x dx e e x dx
  

 

 
  

        in which 

   1
2

x

n

x

e x dx








   by the choice of   and    1 0

x

n

x

e x dx







   as n  by 

hypothesis. Hence    lim 1 0
x

n
n

e x dx







  . 

THEOREM 3.2: If f cG  &  n   then f n f   as n  in 
cG . 

PROOF: We have to prove that there exists m such that  nf f  G
c

m  and 
,

0n m
f f


    

as n  for each 0.   Since f cG , fG
c

k  for some k. With M as in (II) choose m, k
' k  and 
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As f is uniformly continuous on every compact subsets of B , given 
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Where K
'

2

1 ke 



 as can be easily checked. Consider 
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Now the integral in J1 can be split as a sum of two integrals say I1+I2 where I1 denotes the integration over 

t   and  I2 denotes the integral over .t   Using  (II) and (7), it can be easily shown that 
1

2
I


 . 

We shall now consider I2. As f ,c

k
 for each z A  we see that 
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       (10) 

Which can be made less than 
2


 for sufficiently large n by property (III) of the family  . Thus J1 0  

as n .  

 Also it is easy to see that J2 is dominated by 
    

ReRe Re

,
sup

k z tm z k z

nk
z B

e e e f t dt








  

Hence for n large  

           Re Re

2 sup 1 sup 1 2
k m z k t k m z k t

n n
z B z B

J e e t dt e e t dt 
 

 
 

     

 2
3

M M
M

 
   
 

 by (6), (III) lemma 3.1 Thus J2 0  as n                   (11) 

The theorem now follows from (9), (10) & (11). 

THEOREM 3.3: Let f, g
c

 &  n  . If  ,n nf g n      then fag in G
c

. 

PROOF: Allowing n to tend to   on both sides & using theorem above 3.2, we have the result. 

THEOREM 3.4: Let    ,n n   be any two sequences in .  then  n n   is also a sequence in  . 

PROOF: We shall proving (I) 

      n n n nx dx t x t dtdx   
 

    .    

 The iterated integral    n nt x t dxdt 


  is finite as ,n n   are in G. Hence we can use Fubini’s 

theorem and get       n n n nx dx t x t dxdt   
 

       n nt y dydt 


   where y=x-t 

=1 as    ,n n   .  

For proving property (II) let    1 2&n nx dx M x dx M 
 

   . 
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As before we have   1 2( ) .n n x dx M M M 


    

To prove property (III) we shall use lemma 3.1. Let    1
x

n ne x dx C





   and 

   1 .
x

n ne x dx d





   Yet another application of Fubini’s theorem gives 

        1 ( ) 1
x x

n n n ne x dx e dx x t t dt
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n nt dt e x t dx


 
 

         1
y t
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t t t

n nt dt e e e y dy
  

 
 

     , where y=x-t. The above integral is easily seen to 

be dominated by  2 1n n nd M C d M  , where M
1 2&M  are as before. This completes the proof of 

theorem 3.4. 

 Theorem 3.3 & 3.4 prove that the elements of   satisfy the required conditions for “Delta 

sequences”. Hence the elements of   can be called Delta sequences in the sense of [16]. Now in a 

canonical way can use G
c

 and   to constant a Boehmians space which we denote by  ,cGB .  

We now consider yet another product between elements of G and G as follows. Let uG . The product 

between u & f is an element of G  defined as (uf) ( ),u f    G. 

Let  be the class of sequences  n  from G such that     ˆ: , , ,n n n nn where        . 

 Here    
1ˆ ( ) [ ]( ) ,
2

n nz R x z t K t z d

 
 

    where 0< , ( , )
2

K t z


   is the kernel of the 

transformation as given by (1). 

THEOREM 3.5: For uG  and   ,n nu u    as n  in G . 

PROOF: As uG  by lemma 3.1 of [5] there are positive constants C and 0   such that for all  , 

 u C


            (12) 

Choose .   hence by (12) we can write  

    n n nu u u C


                  (13) 

Denoting the constant function 1(z)=1 by (4) we have 
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We shall now prove that 0nC   as .n  as  n  , ˆ
n n   for some   .n   hence using 

(I) at the appropriate place,  

We have 
         Re Re 1ˆsup 1 ( ) sup , 1
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Let R be such that for a given 0  ( with M as in (II) )  
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R
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Let A and B is defined as in Theorem 3.2. In A ( a compact set ) e
z
 is uniformly continuous. Hence given 

,
2M


there exists 0   such that whenever  , , 1

2
t K t z

M



         (z )A   (17) 

Since B   is the disjoint union of A & B for our purposes it is enough to show that the supremum over both 

A & B tends to 0 as n . 

Put I    1

1
, 1

2
n

t

t K t z d




 

    and      2

1
, 1

2
n

t

I t K t z d




 

   . 

In view of (17) and property (II) 
1

2
I


        (18) 

For      , , 1 1 1
t t

z A B K t z e K e
 

 


        for a suitable constant K &     as 

before. Then by property (III),  
2

2
I


  for large n.                      (19) 

By (18), (19) and the fact that    we have  

     Re 1
sup , 1

2

z

n
z A

e t K t z d
 









           (20) 

Now for 

           

   

Re 1 1
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2 2

1
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2

z R
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n

z B e t K t z d e t K t z d

e t e d

   

 

 

 
 




 

 





     

  

 



 

As before we write 1 1 2
t t

e e
 
     and in view of (20), Property (II) of the class   we see that the 

above expression in less than or equal to ( 2 )
3

M M
M


   

Hence for large n,  
     Re 1

sup , 1
2

z

n
z B

e t K t z d
 









      (21) 

Form (15), (20) & (21) we have 0nC   as n       (22) 

Combining (14) & (22) we have  nu u   as n  in G . 

THEOREM 3.6: Let u,v
'
 &  n  . If u ,n nv n    then u=v in G . 

PROOF: Allowing n to tend to   and using theorem 3.5 we get result. 

THEOREM 3.7: If    ,n n   then   .n n    

PROOF: Since    ,n n   there exists    ,n n    such that ˆ ˆ& , .n n n n n       Hence 

by lemma 5.2 in [6] we get 

       ˆ ˆ
n n n n n n n n n nR R R           


      .  As    ,n n   ,  n n    

by theorem 3.4 this proves that  n n   . 

Theorem 3.6 & 3.7 prove that the elements of   satisfy the required conditions for delta sequences. Hence 

the sequences of  can be called “Delta sequences” in the sense of [16]. Using G  &  , we can construct 

in a canonical way a Boehmians which we denote by  ,GB . We shall now obtain some of the 

convergence properties of sequences in        

  G&G . 

THEOREM 3.8: Let nf f  as n  in G
c

 &  G is any fixed element. Then nf f     as 

n  in G
c

. 
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PROOF: Since 
nf f  as n  in G

c
, there is an mN such that f  G

c

m
 and fn  G

c

m
for large n 

and 
,

0n m
f f


   as n  in G

c

m
, for every 0          (23) 

As  , we can choose m   such that   .
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t e
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,

m z
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f f z Ke f f

 
        (25) 

Combining (23),(24) & (25) We have     
,,

0n n mm
f f z K f f

 
       as n . 

This proves the theorem. 

THEOREM 3.9: Let nf f  as n  in G
c

AND  n   then n nf f   as n in G
c

. 

PROOF: Since nf f  as n  in G
c

 (23) hold.  Also 

           n n n n nf z f z f f z f f z           . By theorem 3.2 , f nf f   as 

n . Hence to prove the required result it is enough to prove that   0n nf f     as n  in 

G
c

.         n n n nf f z f f z t t dt 
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e f f t dt e f f e t dt t dt

 
  



  

 
      

 
    

   Re

,
1

m z m t

n nm
e f f e t dt M






 
    

 
  by property (II).  Hence  
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,
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nM M e t dt
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Thus       Re

,,
sup 0

m z

n n n n n mm
z B

f f e f f z M f f



 





         as n  by 

(23) hence the theorem. 

THEOREM 3.10: Let nu   as n  in G
'
 & G is any fixed element. Then nu u   

as n  in G
'
. 

PROOF: Since nu u  as n  in G
'
, there exists 0& 0nC    as n  such that for every 

 G,   n nu u C


            (26) 

Hence      n n nu u u u C


         by (23) 

n nC C
  

     , Where nC 0nC


   as n .  This proves that nu u   

as n  in G
'
. 

THEOREM 3.11: Let nu u  as n  in G
'
, & n  . Then n nu u   as n  in G

'
. 

PROOF: Since nu u  as n  in G
'
, (26) holds. As uG, there exists C such that for every  G, 

 u C


  .          (27) 
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Now        n n n n nu u u u u           .         (28) 

Also in the proof of Theorem 3.5, we have 
n nC

 
      for 0    & 

 Hence   1 .n nC
 

     Thus from (26),(27) & (28) we have 

   ,n n n n n nu u C C d
  

             where   1 0n n nd C C C


      

as n . This proves the theorem 

 

IV. Fractional Fourier Transform: 

  Let n

n

f



 
 

 
(B  G

c
, ) . Since f n  G

c
 and  G, form [4,7] we know that  ˆ

n nf R f  

G
'
 and  ˆ

n nR   G. As    ˆ,n n    . Also n

n

f


 is a quotient in        (B  G

c
, )  implies 

that , , .m n n mf f m n      N Taking the fractional FT on both sides we have 

    , ,m n n mR f R f m n       N in G
'
 (see [2,3]) 

    I.e. 
' '( ) ( ) ( ) ( ), ,m n n mC R f R C R f R m n   

     N where 

 
' 2

2

1

2 iC e
C

i C








    (see [7]) 

This proves that 
ˆ( )

ˆ( )

n n

n n

R f f

R



  
  is a quotient in (B  G

'
, ) .  

Hence whenever n

n

f



 
 

 
(B  G 

c
, ) , 

ˆ

ˆ
n

n

f



 
 

  

(B  G
c

, ) .  

Now we are ready to define the fractional Fourier transform on (B  G
c

, ) . 

DEFINITION 4.1: Let x= n

n

f



 
 

 
(B  G

c
, ) . The fractional Fourier transform  x̂ R x  of x is 

defined, as Boehmians in (B  G
'
, )  by 

ˆ
ˆ

ˆ
n

n

f
x



 
  
  

 where ˆ ˆ,n nf   are the classical fractional FT of 

f ,n n  in G
'
, G respectively. 

THEOREM 4.2: The fractional Fourier transform on (B  G
c

, )  is well defined. 

PROOF: Let n

n

f



 
 

 

n

n

g



 
 
 

 in (B  G
c

, ) . Then , , .m n n mf g m n      N and taking 

Fractional Fourier transform we have   [ ]m n n mR f R g      

' '[ ] [ ] [ ] [ ]m n n mC R f R C R g R   

    

' 'ˆ ˆˆ ˆ
m n n mC f C g    in G

'
, ,m n  N i.e. ˆ ˆˆ ˆ

m n n mf g  . 

This proves that 
ˆ

ˆ
n

n

f



 
 

  

ˆ

ˆ
n

n

g



 
 
 

 in (B  G
'
, ) . 

THEOREM 4.3: The Fractional Fourier transform from (B  G
c

, )  to (B  G
'
, )  is one-one and onto.  
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PROOF: If Fractional FT 
ˆ

ˆ
ˆ

n

n

f
x



 
  
  

=0 in (B  G
'
, )  then ˆ 0,nf n   in G

'
, which implies that 

0,nf    n in G
'
. Thus 0n nf    in G

c
, for every n in (B  G

c
, ) , 

n

n

f



 
 

 

n n

n n

f 

 

 
 

 
. Hence x= 0n

n

f



 
 

 
 in (B  G

c
, ) . This proves that the transform is one-to-one. 

Let 
ˆ

n

n

g
y



 
  
 

 (B  G
'
, ) . Since g

n  G
'
, there exists f

n  G
'
 such that 

ˆ ,n ng f   n. Hence 
ˆ

ˆ
n

n

f
y



 
  
  

. Since f n  G
'
 and n  G,   n nf   is in G

c
 and hence 

n n

n n

f
x



 

 
  

 
(B  G

c
, ) . Now 

ˆ ˆˆ
ˆ

ˆˆ ˆ
n n n

n n n

f f
x y



  

   
     
      

 in (B  G
'
, ) . 

Hence for a given 
ˆ

n

n

g
y



 
  
 

 (B  G
'
, ) , there exists n n

n n

f
x



 

 
  

 
(B  G

c
, )  

(With ˆ )n nf g  such that x̂ y . This proves that fractional FT from (B  G
c

, )  to 

(B  G 
'
, )  is onto. 

THEOREM 4.4: The fractional FT from (B  G
c

, )  to (B  G
'
, )  is an extension of the classical 

fractional FT on G
'
.  

PROOF: u G
' ˆ [ ]u R u   G

'
 (see[7]). By theorem  u  G

'
 can be identified with the Boehmians 

n

n

u 



 
 
 

 in (B  G
c

, )  where  n  is any delta sequence in  . 

Let n

n

u
x





 
  
 

. Then 
ˆˆ

ˆ [ ]
ˆ

n

n

u
x R x 



 
   

 
 which is identified with û  in (B G

'
, )  by theorem 4.1 

this proves the theorem. 

 Note: G 
'
 can be considered as a subspace of both these spaces. 

THEOREM 4.5: The fractional FT is linear transform from (B  G
c

, )  to (B  G
'
, ) . 

PROOF: Take x= n

n

f



 
 
 

 and n

n

g
y



 
  
 

 in (B G
c

, ) .  

Then 
   n n n n

n n

f g
x y

 

 

   
   

 
(B  G

c
, ) .  

Now     
       

 
n n n n n n n n

n n n n

f g R f R g
x y R x y R

R

 

 



   

   

       
     

  
 

ˆ ˆˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ˆ

n n n n n n n n n n

n n nn n n

R f R R g R f g f g

R R

   

 

   

    

      
        

        

ˆ ˆx y   in (B  G
'
, ) . 

Let   and consider n

n

f
x






 
  
 

 in (B  G
c

, )  
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ˆ

ˆ( )
ˆ

n n

n n

f f
x R x R x   

  
 

   
     

    

 in (B G
'
, ) . This shows that Fourier transform is 

linear transform from (B  G
c

, )  to (B  G
'
, ) . 

         DEFINITION 4.6: Let x= n

n

f



 
 
 

 in (B  G
c

, ) and  G. 

The convolution of x and  is defined in (B  G
c

, ) as n

n

f
x






 
   

 
. 

THEOREM 4.7: Let x (B  G
c

, ) and G be any fixed element. Then   ˆ ˆx x 


   in (B  

G
'
, )  where ̂  is the classical fractional FT of   in G. 

PROOF: If x= n

n

f



 
 
 

 in (B G
c

, ) then n

n

f
x






 
   

 
.  

Hence        
ˆ ˆˆ

ˆ ˆ ˆ
ˆ ˆ
n n

n n

f f
x R x R x R x   

    
 

    
         

      

 in (B  G
'
, ) . 

THEOREM 4.8: Let  nx  be a sequence of Boehmians   converging to x in 

 (B  G 
c

, ) . Then  ˆ
nx  is a sequence of Boehmians   converging to x̂ in  (B  G

'
, )  i.e. 

Fractional FT is a continuous map form (B  G
c

, )  to (B  G
'
, ) . 

PROOF: Since nx x  as n  i.e. (B  G
c

, ) , there exists a delta sequence  k   such that 

   ,n k kx x    G
c

 and n k kx x     as n  in G
c

 .k  N 

By the definition n k kx x     as n  in G
'
 .k  N  

 Since    ,n k kx x    G
c

      

    ,n k kx x    G
'
         

As fractional FT is continuous in G
'
,   (see [7]).  We have 

       n k n k k n kx R x R x x    
 

        as n  in G
'
 .k  N  

By theorem 4.5 we have ˆ ˆˆ ˆ
n k kx x   as n  in G

'
 .k  N  

Which proves that ˆ ˆ
nx x  as n  (B  G

'
, ) .  

 

V. Conclusion: 
 In this paper we introduced two spaces of Boehmians each of which contains the dual of a certain 

space of entire functions. Both these spaces of Boehmians are shown to be isomorphic to each other under 

the Fractional Fourier transform. We extended the theory of the Fractional Fourier transform on this new 

Boehmians space. 
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