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Abstract: Closed-form analytical expressions for the displacement and stresses at an arbitrary point caused by
strike-slip line source buried in a homogeneous, isotropic, perfectly elastic half-space with rigid boundary are
obtained. These expressions are used, further, to find the expressions for the displacement and stresses caused
by vertical as well as horizontal strike-slip line source. The variation of the displacement and stress fields due to
vertical strike-slip line source and horizontal strike-slip line source with distance from the fault and depth from
the fault is studied numerically.
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I Introduction

The theory of dislocation was first introduced to the field of seismology by Steketee (1958a, b). A
dislocation is considered to be a defect in an elastic (or viscoelastic) medium which is represented by a
discontinuity in the displacement field. Static dislocation models are used to analyze the static deformation of
the medium caused by earthquake faults. These faults are slip planes across which discontinuous motion occurs
in the Earth. If the slip on the fault is parallel to the fault strike, the fault is known as strike-slip fault. Steketee
(19584, b) obtained the displacement and stress field of a strike-slip fault with uniform slip. He gave the method
for construction of the Green’s functions and calculated one set of Green’s functions corresponding to a vertical
strike-slip fault. Following Steketee, Chinnery (1961) derived closed- form analytic expressions for the
displacement field in the vicinity of a vertical, rectangular, strike-slip fault and obtained contour maps for two
representative cases: Tango and North Idu earthquakes and the San Andreas Fault. Press (1965) computed
residual displacements, strains and tilts at intermediate and large distances from major earthquakes due to
vertical, rectangular, strike-slip and dip-slip faults in a half-space. The static deformation of various Earth
models caused by two-dimensional sources has been studied by many investigators. Maruyama (1966) obtained
the displacement and stress fields corresponding to long strike-slip and dip-slip faults of arbitrary dip. Rybicki
(1971) investigated the effect of a vertical and a horizontal discontinuity in a half-space on the elastic residual
field of a long strike-slip fault using the method of images. Sato (1971) and Sato and Yamashita (1975) derived
the expressions for the static surface deformations due to two-dimensional strike slip and dip-slip faults located
along the dipping boundary between the two different media. McHugh and Johnston (1977) and Rybicki and
Kasahara (1977) studied the static deformation of a laterally inhomogeneous medium by a two- dimensional
strike-slip fault. Rybicki (1978) derived the formulae for the displacement, strain and stress fields of a two-
dimensional strike-slip fault in a laterally inhomogeneous half-space. Mahrer and Nur (1979a) developed a
model for a very long strike-slip fault in a non- homogeneous half-space with a downward varying shear
modulus. Mahrer and Nur (1979b) considered a static two-dimensional model of a long strike-slip fault in a
crust with horizontally varying rigidity and calculated the surface displacement and strain fields for a number of
slip regimes and crustal rigidity profiles. Wang and Wu (1983), following Steketee’s method of integration,
obtained a closed-form analytical solution for the displacement and stress field due to a “trapezodial” type of
non-uniform slip along a strike-slip fault in an elastic half-space.

Singh (1985) considered the problem of the static deformation of a multilayered half-space by a long
strike-slip dislocation. The representation of sources corresponding to antiplane strain has been considered.
Singh and Garg (1986) obtained the integral expressions for the Airy stress function in an unbounded medium
due to various two-dimensional seismic sources. Sharma and Garg (1991) have obtained the deformation field at
any point of a layered half-space due to very long strike-slip dislocations. Madan and Garg (1997) obtained the
analytic expressions for the displacement and stresses at any point of an orthotropic horizontal elastic layer
coupling in different ways to a base due to a very long inclined strike-slip fault situated in a layer. Kumar et al.
(2002) studied static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined
strike-slip fault situated in one of the half-spaces analytically and numerically. Chug et al. (2010) obtained
closed-form analytical expressions for the deformation at any point of a two-phase medium consisting of a
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homogeneous orthotropic half-space in welded contact with a homogeneous isotropic elastic half-space caused
by non-uniform slip along a very long vertical strike-slip dislocation, situated in the orthotropic elastic half-
space. Singh et al. (2011) obtained analytical expressions for stresses at an arbitrary point of homogeneous,
isotropic, perfectly elastic half-space with rigid boundary caused by a long tensile fault of finite width. Malik et
al. (2012) obtained analytical expressions for stresses and the displacements at an arbitrary point of
homogeneous, isotropic, perfectly elastic half-space with rigid boundary caused by a long dip-slip fault.

Beginning with the expression for the displacement in an infinite medium given by Singh (1985), we
have obtained the integral expressions for the displacement and stresses due to a long strike-slip fault in a
homogeneous, isotropic, perfectly elastic half-space by applying the boundary conditions of rigid boundary at
the surface of the half-space. The integrals were then evaluated analytically, obtaining closed-form expressions
for the displacement and the stresses at any point of the half-space caused by a long strike-slip fault. The
expressions for the displacement and stresses for a vertical and a horizontal strike-slip dislocation follow
immediately.

1. Theory
In the Cartesian co-ordinates system (X, Y, Z) = (X, X,, X3) , the equations of equilibrium are
pij, i + fi =0 (1=1,2,3) (1.1a, b, ¢)
where P; is the stress tensor, fi is the body force per unit volume and
_9
pij,j - an pij
Summation over the repeated suffix is understood. The stress-strain relations for an isotropic medium are
P = A8 + 218, (1.2)

where & is the Kronecker delta (&; =1for i=j and &; =01+ j), Aand w are the lame constants and

€; is the strain tensor. If (U,, U, ,U,) denote the components of the displacement vector, the strain-displacement

relations are

€ :%(ui,j U, (1.3)

Using equations (1.2) and (1.3), we obtain the stress-displacement relations

P = AS;Uy  + a(U; ; +U; ;) (1.9
We shall be considering a two-dimensional approximation in which the displacement components and

consequently, the stresses are independent of a single co-ordinate, say X;, so that@/@x1 =0. Under this

assumption. equations (1.1) - (1.4) get decoupled into two mutually independent sets- one representing the

antiplane strain case (U, =U; = 0) and the other the plane strain case (U, = 0).

1. Antiplane Strain
For antiplane case, we have

u, =u,(y,z), u,=u,=0
The non-zero strain and stress components are

&, = l L v €3 = 1 X (15)
2 oy 2 01
ou, ou,
Pr :,UE’ Pis :/IE (1.6)

For zero body forces, equilibrium equations (1.1b) and (1.1c) are identically satisfied and (1.1a) gives, using
equation (1.6),
VZu, =0 L7

where V2 is the two-dimensional Laplacian differential operator.
A solution of equation (1.7) corresponding a line source at (0, 0, h) in an infinite medium is (Singh, 1985):
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u® = j [A,sinky + B, cosky] e ™ "dk (18)
0

where the source coefficients A0 and B0 are independent of k. Singh (1985) has obtained these coefficients for

the single couple (12) and (13). For the single couple (12)

F
A ==, B,=0 (1.9a)
27y
while for the single couple (13)
F
A =0, B,=* 13 (1.9b)
271
where the upper sign is for z > h and the lower sign for z < h.
X
o / >y
ot @]
/ ©.0.0)
Line Source v

Fig.1 A uniform half-space (Z > 0) with a line source acting at the point (0, 0, h)

For a line source parallel to the x-axis acting at the point (0, 0, h) of the half space Z > 0 (Figure 1), a suitable
solution of equation (1.7) is of the form

u, =u® +I[Asin ky + B cosky] e *dk (1.10)
0

where ul(o) is given by the equation (1.8) and A and B are unknown functions of k to be determined from the
boundary conditions. From equations (1.6) and (1.10), the stresses are found to be

P, = yT(Abe‘“‘h +Ae™® )cos ky kdk — ,ujf( B,e " +Be™ )sin ky kdk (1.12)
0 0

P, = uT(iﬁbe‘“‘“ —Ae® )sin ky kdk + yT(iBoe‘“‘h ~Be™ )cos ky kdk (1.12)
0 0

where the upper sign is for z > h and the lower sign for z < h.
We assume that the surface of the half-space Z > 0 is with rigid boundary. Therefore, the boundary condition is

Uu=0az=0 (1.13)
It is noticed from equations (1.9a, b) that A, and By have different values for z _h. Let A" and B be
respectively, the values of A, and B, for z < h. From equation (1.10) and (1.13), we get

A=-Ae"

B=-Be™
Putting the values of A and B in equations (1.10) — (1.12), we get the following expressions for the displacement
and stresses at any point of the half-space.

(1.14)
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u = J.[AD sinky + B, cosky] e " "dk - J.[A* sinky + B~ cos ky} e Mgk (1.15)
0 0
P, = /,zj[A) cosky — B, sinky] e k dk —,uJ‘[A’ cosky —B~sin ky} e @ | dk (1.16)
0 0

Py = ”I(AJ sinky + B, cosky) e =k dk + yJ.(A* sinky + B~ cos ky) e M k dk (1.17)
0 0

Evaluating the integrals by using standard integral transform tables (Appendix I), we obtain

L _AY B(h-2) Ay B(h+2)

1 Rz Rz Sz Sz (1.18)
2(h—12)° 2B,y(h—z) A |2(h+2)? 2B y(h+2)
P, Zy[%{ R —l}— 0 ~ _?{ 32 —1:+ S (1.19)
2Ay(h—2) B, |2(h-2)? 2Ay(h+2) B [2(h+2)?
Pz = /u‘: A R4 +R_g{ R2 _l}+ g4 +?{ 52 -1 (120

V. Strike-Slip Dislocation
Let uiJ denote the X;-component of the displacement at P(Xz, X3)caused by a unit concentrated

force acting at Q(yz, y3) in the X; - direction. Then, for antiplane strain, the displacement field due to a long
displacement dislocation of arbitrary orientation is given by (Maruyama, 1966)

u, = IL Au,u; n, ds (1.22)
where U} = ,uiul (1.22)
1k — 1 .
a7

From equation (1.22), we note that ullk is the displacement at P(XZ,XS)in the X, - direction caused by a
source, specified by [1k], we observe that

[12] = u(12)
[13] = u(13)
Equation (1.23) shows that the sources [12] and [13] represent single couples with arms in the X, - and X, -
directions, respectively.

WritingAU, =b ,n, =—=sind, N, =c0SJ, where O is the dip of the fault, equation (1.21)
becomes
u, = ILb(ujs oS S — Uy, sin §)ds (1.24)

(1.23)

Thus the source [12] corresponds to a vertical strike-slip fault (O = 900) and the source [13] corresponds to a
horizontal strike-slip fault (& = 0°). From equations (1.23) and (1.24), we have

u, = j ) b(Ugg5) COSS — Uy, sin S)ds (1.252)
In case of a line dislocation, we can do away with the integration in equation (1.25a), thus obtaining
U, = 4bds(Ugs COS S —Ug,, Sin 5) (1.25h)

Therefore, the field due to a long strike-slip fault of arbitrary dip can be expressed in terms of the fields due to a
vertical strike-slip fault and a horizontal strike- slip fault.

V. Vertical Strike-Slip
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From equation (1.25b), the single couple (12) of moment I:12 is equivalent to a vertical strike-slip line
source such that
F, = ubds (1.26)
where b is the slip. Therefore, from equation (1.9a), the source coefficients for a vertical strike-slip source are
given by

bds
A=A =—, B,=B =0 (1.27)
2
On putting these values of the source coefficients from equation (1.27) into equations (1.18-1.20), the results for
the displacement and the stresses for a vertical strike-slip are found to be

g Pdsyp 1 1 (1.28)
Y27 RSP '
bds| 2(h-z)> 1 2(h+z2)* 1
lZ:ﬂ ( 4 ) T p2 ( 4 ) taz (1.29)
27 R R S S
ubdsy| (h—2) (h+2)
Pia Vs { R* s* 50
VI. Horizontal Strike-Slip
The single couple (13) of moment F is equivalent to a horizontal strike-slip line source such that
F, = ubds (1.31)
Therefore, from equation (1.9b), the source coefficients for a horizontal strike-slip source are given by
A=A =0, Bozi@, B’:—% (1.32)
2 2

On putting these values of the source coefficients from equation (1.32) into equations (1.18-1.20), the results for
the displacement and the stresses for a horizontal strike-slip are found to be

bds[ (z—h h

U, = 27:{(ZR2 )+(ZS+2 )} (1.33)
bdsy| (h—z h+z

12:ﬂﬁy{( R4)_(S4 )} (L.34)
phds[ 1 2(h—-2)> 1 2(h+z)?

S {?‘ R s 5 -

where R®=Yy*+(z-h)?>, S®=y*+(z+h)’.

VIl.  Numerical Results
We study numerically displacement and the stress fields at any point of the uniform isotropic perfectly
elastic half-space with rigid boundary caused by a vertical and horizontal strike-slip line source. We define the
following dimensionless quantities

L L

where L is the distance of the line source from the interface. Let the dimensionless displacement and stresses be
denoted by U; and B; . Then,

L l?
=Y P = Pjj
bds ' pubds
where b is the magnitude of dislocation (slip) and ds is the width of the fault.

(1.37)
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From equations (1.28-1.30), (1.36) and (1.37), we get the following expressions for the dimensionless
displacement and stresses for a vertical strike-slip line source:

o Y[L 1 o
Y2 A2 B? '
1[20-2)* 1 2a+z2)* 1
=== - —__x —7 4 _ 1.39
2| A A’ B* B® (139)
[(1-2) (1+2)
P13:Y A4 + B4

(1.40)

From equations (1.33-1.35), (1.36) and (1.37), we get the following expressions for the dimensionless
displacement and stresses for a horizontal strike-slip line source:

1[(z-1) (Z+))

Ulz—_ 2 tg } (1.41)
((1-2) (1+2)

PlZ:Y_ g } (1.42)
11 20-2)% 1 2(1+2)°

A m A e e -

where A> =Y? +(Z -1)%, B2 =Y2+(Z +1)*

VIII. Discussion
Figures 2(a) - 2(c) show the variation of dimensionless vertical displacement U, and shear stresses

P,and B, at the interface with the horizontal distance from the fault. Figure 2(a) shows the variation of
displacement U, with distance from the fault at z = 2L, 2.5L and 3L respectively. Moreover, U, tends to zero as
y approaches to infinity. Figure 2(b) shows the variation of the dimensionless shear stress P, with the
horizontal distance from the fault at z = 2L, 2.5L and 3L respectively. Aty =0, P,, attains its maximum value
for z=2L and minimum value atz = 3L. P, approaches to zero as y approaches to infinity. Figure 2(c) shows

the variation of the dimensionless shear stress P, with y at z = 2L, 2.5L and 3L. It is observed that P, is zero
aty = 0 and also tends to zero as y approaches to infinity.
Figures 3(a) - 3(c) show the variation of dimensionless vertical displacement U, and shear stresses

P,and B, at the interface with the depth at locations at y = 2L, 2.5L and 3L respectively. It is observed that
for y = 3L, the variation of U, is smooth but for y = 2L, U, varies strongly in the range 0 < z < 2L. Moreover it
tends to zero as z approaches to infinity. Figure 3(b) shows the variation of the dimensionless shear stress P,
with the depth at y = 2L, 2.5L and 3L respectively. The variation of P, for y =2L depends strongly on z
whereas for y = 2.5L and y = 3L, the variation of stress component P, is smooth. P, tends to zero as z
approaches to infinity. Figure 3(c) shows the variation of the dimensionless shear stress P, with z at'y = 2L,
2.5L and 3L. For y = 2L, P,; attains the maximum value. The variation is significant in the range o < z < 3L.

P; tends to zero as z approaches to infinity.

Figures 4(a) - 4(c) show the variation of dimensionless horizontal displacement U, and shear stresses

P,and P; at the interface with the horizontal distance from the fault. Figure 4(a) shows the variation of the

horizontal displacement U, with distance from the fault at z = 2L, 2.5L and 3L respectively. The value of U, is
maximum at z = 2L and minimum at z = 3L and tends to zero as y approaches to infinity. Figures 4(b) and 4(c)
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show the variation of the dimensionless shear stresses F, and P, respectively with the horizontal distance
from the faultat z = 2L, 2.5L and 3L. P,, attains its minimum value for z = 2L and maximum value at z = 3L.

P, approaches to zero as y approaches to infinity. The stress PF,5 also attains maximum value at z = 2L and
varies strongly in the range 0 <y < 2L.. It also tends to zero as y approaches to infinity.
Figures 5(a) - 5(c) show the variation of dimensionless horizontal displacement U, and shear stresses

P,and P, at the interface with the depth at locations at y = 2L, 2.5L and 3L respectively. The variation of
U, is sharp for z = 2L while it is smooth for z = 3L. Moreover it tends to zero as z approaches to infinity.
Figure 5(b) shows the variation of the dimensionless shear stress P, with the depth at y = 2L, 2.5L and 3L
respectively. The variation of P, for y =2L depends strongly on z whereas for y = 2.5L and y = 3L, the
variation of stress component P, is smooth. P,, tends to zero as z approaches to infinity. Figure 5(c) shows the

variation of the dimensionless shear stress P; with zaty = 2L, 2.5L and 3L. The variation of the shear stress is
noticeable in the range 2L< z < 3L for all values of y and tends to zero as z approaches to infinity.

VERTICAL STRIKE SLIP FAULT
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Fig. 2(a) Variation of dimensionless displacement U, with the distance from the fault

0.6
P, z=2L
0.5} z=2.5L 4
z=3L

I I
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1 I I |
DIMENSIONLESS DISTANCE FROM THE FAULT

Fig. 2(b) Variation of dimensionless shear stress (Py,) with the distance from the fault
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