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Abstract : Our main purpose in this project is to help reader find a clear and glaring relationship between 

linear algebra and differential equations, such that the applications of the former may solve the system of the 

latter using exponential of a matrix. Applications to linear differential equations on account of eigen values and 

eigenvectors, diagonalization of n-square matrix using computation of an exponential of a matrix using results 
and ideas from elementary studies form the core study of our project. 
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I. Introduction 
The study of Ordinary Differential Equation plays an important role in our life. Some applications include study 

of growth of microorganisms, population, decay of radiation, etc. Ordinary Differential equations is also used in 

medicine. Solving a first order Ordinary Differential Equation of first degree could be elementary as we have 

many ways of doing so – the Ordinary Differential Equation could be linear, homogenous; or we could solve it 

finding suitable integrating factor to make it exact, etc. In solving a second order non-homogenous differential 

equation, we have many methods namely: method of undetermined coefficient also called method of judicial 

guessing, method of variation of parameters, Inverse D-opertor method, etc. The homogenous part can well 
easily be solved by finding the roots of the auxiliary equation. However, as the order of the Ordinary 

Differential Equation goes higher, it becomes more tedious to solve the homogenous/non-homogenous part. In 

such cases, we reduce the nth order Ordinary Differential Equation into a system of n first order Linear 

Differential Equation. 

 

II. Main Idea Of The Proposed Solution 
In this paper we propose to solve a system of first order linear differential equations using techniques of linear 

algebra. The innovative part of our paper is the use of exponential of a matrix to find the required solution of the 

system. 

We know for any matrix A, ...
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If A is nilpotent of degree n, the infinite sum above terminates at some point. In our paper, we use exponential 

of matrix in following manner: 

Step 1–Write the given system in matrix form. Call the state transition matrix as A. 
 

Step 2 – Find eigenvalues and eigenvectors of A. Form the matrix P whose columns are eigenvectors of A. 

 

Step 3  –  Compute P-1AP which will be diagonal. For example P-1AP = diag(11). 
 

Step 4 – Write A = P diag (11) p
-1. Hence tA = Pdiag(t1t1t) p

-1. Finally etA = Pdiag (et
,e

tet) p-1 

 

Step 5 – Using result that general solution of x1 = Ax is x(t) = etA C. The solution is etA. C; etA being obtained 

              from step 4 

 

III. Solution of Differential Equations using Exponential of a Matrix 

Theorem: A matrix solution ‘(t)’ of ’=A (t)  is a fundamental matrix of x’=A (t) x iff w (t)  0 for t ϵ 
(r1,r2). 

Proof: Let (t) be a fundamental matrix of x’ = A (t) x with column vectors 1,2……n. 
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Let (t) be a solution of x’=A(t) x. then 

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)()(   for some constants c1,c2,..... cn not all zero.  

By uniqueness of a solution cj’s are all unique. 

If c=(c1,c2,…….cn) then (t)=(t)c 
For any t0 ϵ (r1,r2) above relation represents n-linear algebraic equations in the n-unknowns c1,c2,………cn and 

has unique solution. 

 Det (t)0W(t)  0 r1 < t <r2  

 

Let W(t)  0  t ϵ (r1,r2) 

1,2……n are linearly independent. 

(t) is a fundamental matrix. 
 

Theorem: The general solution of x’=Ax is x(t) = etA c where ‘c’ is an arbitrary constant vector. The solution of 

                x’=Ax with initial condition ‘x(t0)=x0’ is given by x(t) = e(t-t
0

)A x0. 

 

Proof: Let x(t) be any solution of x’ =Ax 

 

           Define u(t) =e(-tA) x(t) = 0 

 

 u’(t) = e-tA x’(t)- A e(-tA) x(t) = 0 
 

 u (t) = c. 
 

i.e. x(t) = etA c. 
 

Now, x(t0) = et
0

A c 

 

x0 = et
0

A c 

 

c = e-t
0

A x0 

 

 x(t) = etA e-t
0

A x0 

 

= e
(t--t

0
)A x0 

 

(t)= etA is the fundamental matrix of x’ = Ax, as 

’ (t) = )( tAe
dt

d
 

           = AetA 

           = A  (t) 
 

Variation of Constant Formula: 
Any solution of x’(t) = A(t)x(t) + B(t) such that x(t0) = x0 is given by, 

 

x(t) = dssBsxt )()()( 1

0

 where ‘ )(t ’ is a fundamental matrix of 

 

x’(t) = A(t)x(t) such that )( 0t = I. 

 

Proof: Let x(t) = )(t C(t), where C(t) is an unknown vector on ),( 21 rr . 

 

            x(t0) = )( 0t C(t 0 ) 

 

             00)( xtC  . 
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             )()()()()()( tCttAtCttx   

 

            )()()()()()()()(.. tCttAtCttBtxtAei   

 

                                      )()()()( txtAtCt   

          ).()()(.. tCttBei   

              ).()()( 1 tBttC   
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 IV.       Experimental Results  

Solve the following system of linear first order O.E.E.: 

zyx
dt

dz

zyx
dt

dy

zyx
dt

dx


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Soln: The given system can be put in the form. 
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The characteristic polynomial of matrix ‘A’ is 






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)( IAP  

   

                         = (1-)(-3)( +2) 
 

 The eigenvalues of ‘A’ are 1=1, 2=3 and 3=-2 
 

Put 1 = 1 in (A-1) V=0 we get, 
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R1R3 
 

i.e. 
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i.e. 
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R2→R2-3R1 
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R2→R2-3R1 
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v1+v3 = 0 and v2-4v3=0 
 

Choose v3 = 1v1 = -1, v2=4. 
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1V  is an eigen vector of ‘A’ corresponding to the eigen value 1=1 

Similarly, 
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Let P = 
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Now, P-1 AP = 
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                      = 
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 = diag (1, 3, -2). 

 

 P-1 AP = diag (1, 3, -2) 
 

 A = P diag (1, 3, -2) P-1 
 

tA = P diag (t, 3t, -2t) P-1 

 

 etA = P diag (et, e3t, e-2t) P-1 
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 the general solution of the given system is, 
 

X= etA C. 

 

i.e. 
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where c1, c2, c3 are arbitrary constants. 

 

IV. Conclusion 
Mathematics is one of those few fields of study in which a given problem can be tackled using more 

than one approach. In our paper, we have solved systems of differential equations using techniques of linear 

algebra by exponential of matrix method. However, there are certain limitations, one of which is the inability to 

find the exponential of our matrix if the matrix is non-diagonalizable or the given matrix is not nilpotent or if the 

given matrix possesses complex eigen values. 
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